
Czech University of Life Sciences Prague

Faculty of Environmental Sciences

Surface Urban Heat Island in Prague:

Retrospective Analysis, Heat-Related

Mortality Links, and COVID-19

Lockdown Effect

Ing. Tugba Dogan

This dissertation thesis is submitted for the degree Doctor of Philosophy

at the Department of Water Resources and Environmental Modeling.

Prague March 2024 Dissertation Thesis



Surface Urban Heat Island in Prague:

Retrospective Analysis, Heat-Related

Mortality Links, and COVID-19

Lockdown Effect

Author: Ing. Tugba Dogan

Supervisor: Mgr. Aleš Urban Ph.D.

Co-supervisor: prof. Ing. Martin Hanel, Ph.D.



I hereby declare that the dissertation thesis entitled " Surface Urban
Heat Island in Prague: Retrospective Analysis, Heat-Related Mortality
Links, and COVID-19 Lockdown Effect" submitted for the degree

Doctor of Philosophy in Environmental Modelling field is my

original work guided by my supervisor and my co-supervisor. Any

information made by others or literal quotations are referenced.

The thesis has not been published elsewhere.

...................................

Ing. Tugba Dogan



Acknowledgement

I would like to thank my supervisor Mgr. Aleš Urban Ph.D. for providing

invaluable scholarly guidance. I appreciate his dedication, patience, and

intellectual rigor, which have been crucial to the completion of this

research. Special thanks to prof. Ing. Martin Hanel, Ph.D., who has been a

source of inspiration and guidance throughout this doctoral journey.

Finally, I would like to thank my family for their support.



Abstract

In the face of escalating climate change, the frequency and intensity of

heatwaves are projected to rise. Concurrently, the urban heat island effect

exacerbates the adverse impacts of heatwaves, leading to an increase in

heat-related mortality. To effectively address these mounting challenges,

it is imperative to gain a comprehensive understanding of the effects of

environmental changes on urban heat islands and their implications for

public health. This study aims to provide a holistic assessment of the

multifaceted impacts of urbanization on urban heat islands and establish

a correlation with heat-related mortality during heat waves. This is

achieved through three interconnected case studies, each with a distinct

focus: the temporal evolution of Surface Urban Heat Island (SUHI) due to

land cover change, the impacts of reduced emissions during the

COVID-19 lockdown on atmospheric and surface Urban Heat Islands

(UHIs), and the spatio-temporal relationships between SUHI intensity

and heat-related mortality in Prague, Czechia. The first case study

leverages CORINE Land Cover products and Landsat satellite images

from five pivotal periods (1990, 2000, 2006, 2012, and 2018) to evaluate

the effects of land cover change on SUHI. The second case study assesses

the impact of the COVID-19 lockdown on UHI dynamics by comparing

satellite images and weather station data from the lockdown period in

March–April 2020 with a reference period in March–April 2017–2019.

Daily MODIS images are used to examine changes in mean SUHI, while

air temperature data from Prague weather stations are employed to

analyze atmospheric UHI. The final case study explores the links between

spatial distribution LST and heat-related mortality during heat waves

using daily MODIS land surface temperature images and daily all-cause

mortality data in ten Prague districts. Distributed lag non-linear models,

adjusted for long-term trends



and seasonal cycles, are used to establish heat-related mortality risk of

major heatwaves in Prague between 2001 and 2020. In conclusion, this

thesis provides a comprehensive exploration of the complex interplay

between urbanization, urban heat islands, and heat-related mortality. It

underscores the importance of understanding these dynamics to develop

effective strategies to mitigate the impacts of heatwaves, enhance urban

resilience, and promote public health.



Contents

Acknowledgement................................................................... 4

Abstract...................................................................................5

Part I..................................................................................... 19

Introduction.......................................................................... 19

Chapter I................................................................................21

Introduction......................................................................................... 21

1.1Urban Heat Island.............................................21

1.2 Causes of Urban Heat Island...................... 23

1.3. Impacts of Urban Heat Island.................... 26

1.5. Remote sensing and SUHI..............................28

1.5. Thesis Structure..............................................29

Part II....................................................................................30

Case Studies.......................................................................... 30



Chapter II...............................................................................31

Case Study I: Evaluating the effects of land cover change on the

change of surface urban heat island............................................31

Abstract.................................................................32

2.1 Introduction.................................................... 33

2.1 Methods........................................................... 35

2.3 Results and Discussion.................................... 43

2.4 Conclusion....................................................... 51

Chapter III.............................................................................53

Case Study II: Effect of COVID-19 Lockdown on Urban Heat Island

Dynamics in Prague, Czechia...................................................... 53

Abstract.................................................................54

3.1 Introduction.....................................................55

3.2 Materials and Methods.................................... 58

3.3. Methods..........................................................61



3.4 Results............................................................ 66

3.5 Discussion.......................................................73

3.4 Conclusion...................................................... 82

3.5. Appendix........................................................ 83

Chapter IV.............................................................................86

Case Study III: Links between the spatial distribution of the land

surface temperature and heat-related mortality in Prague, Czech

Republic.......................................................................................86

Abstract.................................................................87

4.1 Introduction.................................................... 88

4.2 Materials and Methods....................................90

4.2.1 Data.............................................................. 90

4.3 Methods.......................................................... 92

4.4. Results and Discussions................................. 96

4.5 Conclusions....................................................101



Chapter V.............................................................................103

5. Conclusions......................................................................103

5.1. Further Research.......................................... 105

Chapter VI............................................................................107

References.......................................................................................... 107

Chapter VII...........................................................................119

Curriculum Vitae................................................................................ 119



Part I

Introduction



Chapter I

Introduction

1.1 Urban Heat Island

Urban heat Island (UHI) phenomenon is defined as noticeably high

temperature within the urban region compared to the surrounding rural

vicinity (Figure 1.2) (Oke, 1973). Urban heat Island was introduced by

Lake Howard who investigated UHI in London (Yang, Qian, Song and

Zheng, 2016). Following studies of this concept were made for Paris and

Vienna by Emilian Renou and Wilhelm Schemidt in the 19th and 20th

centuries (Gartland, 2011). These temperature differences between urban

and rural regions can be 10 to 15° C during the day and 5 to 10°C during

night (Hashem Akbari et al., 2013). Figure 1.1 illustrates the cross-section

of surface and air temperatures for daytime and nighttime throughout

rural, suburban and urban areas.

Even though UHI effect occurs throughout all the seasons of the year, its

existence during the summer in warm climate cities is a matter of

immense public policy concern due to increasing exposure of high

summer temperatures which precipitates a rise in air conditioning

demand, an increase in air pollution, and a spike in heat- stress related

mortality and illness.
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Figure 1.1. Temperature profile for urban, suburban and rural areas

during day and night (EPA, 2018).

UHI was categorized into three parts related to the altitude at which they

are measured; boundary layer heat island, canopy layer heat island, and

surface urban heat island (Figure 1.2.) (Oke, 1976; Zhang, Zhong, Feng

and Wang, 2009). The boundary layer urban heat island (BLUHI)

measures temperature differences one to two kilometers above

roof-height at altitudes and affects meso-scale (Menut, Flamant, Pelon

and Flamant, 1999). The canopy layer urban heat island (CLUHI)

atmospheric boundary layer ranging from the land surface to roof-top

level. Thermal radiation and warm air rising from the UCL causes

warming in the UBL (Oke, 1987).

Acquisition of the temperature is different for these three categories since

their altitude and scale vary. Microwave radiometers for BLUHI,

networks of meteorological sensors data CLUHI and remote sensing data

for the surface urban heat island (SUHI) which represents surface

temperature (Oke, 1976; Voogt, 2007). Thermal remote sensing – uses
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non-contact instruments that sense longwave or thermal infrared

radiation to estimate surface temperature. Due to freely available satellite

images and its capability of showing spatial patterns of the city, it has

increasing popularity in urban climate studies.

Figure 1.2. UHI Types and Measurement Approaches (Voogt, 2007).

1.2 Causes of Urban Heat Island

Oke (1982) assembled and summarized causes of the UHI as follows:

- accelerated absorption of short-wave radiation due to multiple

reflection; anthropogenic heat resources;

- decreased outgoing long wave radiation because of reduced sky view

(air pollutants);

- decreased radiative cooling;

- increased sensible heat storage due to higher thermal admittance of

constructing substances;

23



- decreased evapotranspiration due to construction material;

- decreased total turbulent heat fluxes from wind speed reduction in the

urban environment (Watson, 2012).

Figure 1.3. Causes of urban heat island (Rizwan, Dennis and Liu, 2008).

According to previous research (Rizwan, Dennis, and Liu, 2008) causes of

UHI are categorized into two types: controllable and uncontrollable

(Figure 1.3). This means that some factors contributing to UHI can be

managed or mitigated through human intervention (controllable), while

others are beyond human control (uncontrollable). Controllable factors

are induced by population growth thus we can also name them human

caused factors. They can be further divided into population related factors

(such as anthropogenic heat and air pollutants) and urban design related

factors (such as sky view factor, green areas, building materials) (Kei

Wang Cheung, 2011). Major cause of urban heat island effect is

urbanization which is the consequence of increasing population in the

city.

Therefore, due to urbanization natural land cover is replaced by artificial

urban surface. As a result, these altered natural surfaces are causing

corruption in natural ecosystem services which affects evaporation, runoff

water, air filtration, shade and wind patterns in the city. Moreover, built
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up areas absorb solar radiation (shortwave and longwave radiation), block

wind and trap heat inside the city. Weather parameters such as cloud

cover, wind speed, diurnal situations, seasons and anticyclonic

conditions, are taken into consideration as an uncontrolled element.

Figure 1.4. Causes of urban heat island (Urban Heat Islands, 2018).

Crucial anthropogenic heat resources that exaggerate UHI are fossil fuel

usage for automobiles and heating/cooling of constructed infrastructure

(Sailor and Lu, 2004). Furthermore, because of anthropogenic reasons,

the increase of temperature is related to the function of shape insulation

(Arnfield, 2003). Anthropogenic factor consequences on UHI also rely on

the size, population and climate conditions of the region so it has a less

impact on small cities than a city (Oke, 1982).

Size, form, composition, and neighborhood planning have an effect on the

UHI (Chen et al., 2006). The reduction in air circulation and the overall

decrease in the temperature within cities are predominantly due to

high-rise buildings and cramped streets, which trap heat collected

throughout the day (Bokaie et al., 2016).
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1.3. Impacts of Urban Heat Island

UHIs have a significant impact on both human health and the

environment. On one hand, they can lead to a range of health issues

including general discomfort, heat stroke, sunburn, dehydration, and

respiratory problems (Aguiar, 2012; EPA, 2016). On the other hand, they

contribute to environmental changes such as the initiation of storms and

precipitation (Dixon and Mote 2003), deterioration of air and water

quality, and an increase in smog and humidity.

A study showed that temperature of rainwater increases from 21°C to

35°C after passing over pavements (Deilami, 2018). This rainwater may

later flow into rivers and streams, which can have harmful effects on

fauna in rivers and oceans (EPA, 2016). Moreover, inhabitants' need for

cooler places in urban areas leads to an increase in energy demand,

especially during summer (Magli et al., 2015). This increase results in the

emission of greenhouse gasses and other air pollutants by electrical

companies. This is caused by using fossil fuels by electrical plants to meet

the extra demands of their clients (EPA, 2016).

Heat stroke, heat cramps, dehydration, and heat-related death are all an

acute issue resulting from heat stress. During the 2003 Heat Wave,

studies estimated about 15000 excess deaths in France, and up to 70000

deaths in whole Europe (Fouillet et al., 2006). In 1995 more than 739

people perished due to a heat wave in Chicago (Whitman et al., 1997).

Cases of Heat Stroke skyrocket, as there is a demonstrable negative

impact on the overall well being of the population during heatwaves

(Argaud et al., 2007).

In addition to the health and environmental impacts, Urban Heat Islands

(UHIs) also exert various negative influences on a city’s economy. The

increased health risks associated with UHIs can lead to higher medical

expenses for individuals and communities. Furthermore, the ecological
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changes triggered by UHIs can disrupt ecological services, potentially

leading to increased costs for environmental management and

restoration. Lastly, UHIs can result in excess energy usage, particularly

for cooling during hot periods, which can significantly increase energy

costs.

Therefore, it is crucial to develop effective strategies to mitigate the

impacts of UHIs, considering their far-reaching implications for public

health, environmental sustainability and sustainable urban planning. In

order to combat these negative impacts, mitigation measures should be

implemented into the city. Mitigation measures are created based on

controllable factors of urban heat island effect in that city. Figure 1.5

shows essential mitigation measures for the cities which aims to reduce

urban heat island effect.

Figure 1.5. Mitigation Measures for the Urban Heat Island (Ichinose et al.,

2008).
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1.4. Remote sensing and SUHI

Remote sensing is used to estimate LST, which is a key parameter in

SUHI studies. Satellites with thermal infrared sensors can capture

thermal infrared radiation emitted by the Earth’s surface, which is used to

calculate LST. Thermal satellite remote sensing of LST provides high

temporal resolution for monitoring SUHIs and enables analysis of the

diurnal cycle of SUHI (Zakšek and Oštir, 2012). The list of satellites with

thermal infrared sensors are shown in Figure 1.6 (Waver et al., 2016).

Landsat and MODIS are most commonly used in SUHI studies.

Figure 1.6. The list of satellites with thermal infrared sensors (Waver et

al., 2016).
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1.5. Thesis Structure

The thesis consists of three case studies and is divided into two parts and

five chapters. The Part I contains an introduction to urban heat island.

The Part II consists of individual case studies:

• Case Study I: Evaluating the effects of land cover change on

the change of surface urban heat island.

• Case Study II: Effect of COVID-19 Lockdown on Urban Heat

Island Dynamics in Prague, Czechia.

• Case Study III: Links between the spatial distribution of the

land surface temperature and heat-related mortality in

Prague, Czech Republic.
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Part II

Case Studies



Chapter II

Case Study I: Evaluating the

effects of land cover change on

the change of surface urban

heat island
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Abstract

The aim of this study is to evaluate the effects of land cover change on the

change of surface urban heat island in the past 28 years in five different

periods; 1990, 2000, 2006, 2012 and 2018 in Prague. For this purpose

Landsat CORINE Land Cover status and change layer products, and

Landsat 5 TM, Landsat ETM+, Landsat TIR/OLI satellite images were

used. The UHI effects evaluation and its relationship with land cover

change was analyzed qualitatively using Jenk’s classification and

quantitatively using SUHI indices. The results showed that the dominant

land cover changes are from rural area to urban fabric in hinterland,

mainly between 9-12 km distance from city center. This peri-urbanization

is correlated with an increase in SUHI which have been steadily

increasing since 2006. Land cover changes and SUHI class change

comparison shows that land cover changes effects on SUHI varies

depending on the location. Overall, these findings suggest that in order to

mitigate the adverse effect of UHI effectively, urban planners and decision

makers should consider the effect of land cover changes along with other

factors affecting UHI.
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2.1 Introduction

Cities contribute to climate change through high energy consumption and

greenhouse gas emissions. Concurrently, they are also more susceptible to

the adverse effects of climate change. These effects not only impact

ecosystems but also pose a threat to human health and comfort, especially

during extreme temperatures in the summer months. In addition to the

challenge of climate change, cities experience the urban climate

phenomenon known as the Urban Heat Island (UHI) effect. The UHI

phenomenon is characterized by significantly higher temperatures within

urban regions compared to surrounding rural areas (Oke, 1973).

The concept of the Urban Heat Island was first introduced by Luke

Howard, who conducted a study on UHI in London (Yang, Qian, Song and

Zheng, 2016). The primary cause of the UHI effect is urbanization, which

leads to the replacement of natural land cover with artificial urban

surfaces. This alteration disrupts natural ecosystem services, affecting

evaporative cooling, runoff water, air filtration, shade, and wind patterns

within the city. Furthermore, built-up areas absorb solar radiation (both

shortwave and longwave), block wind, and trap heat within the urban

canyon.

UHIs significantly affect human health and well-being such as; general

discomfort, heatstroke, sunburn, dehydration and respiratory problems

(Aguiar, 2012; EPA, 2016). Related to environmental effects, UHI

contributes to the initiation of storms/precipitation (Dixon and Mote,

2003), a worsening of air and water quality, increasing smog and

humidity. In order to combat all of these negative impacts, mitigation

measures should be implemented into the city.

UHI was categorized into 3 parts related to the altitude at which they are

measured; boundary layer heat island, canopy layer heat island, and
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surface urban heat island (Oke, 1976; Zhang, Zhong, Feng and Wang,

2009). The boundary layer urban heat island (BLUHI) measures

temperature differences one to two kilometers above roof-height at

altitudes and affects meso-scale (Menut, Flamant, Pelon and Flamant,

1999). The canopy layer urban heat island (CLUHI) atmospheric

boundary layer ranging from the land surface to rooftop level. Surface

urban heat island (SUHI), land surface temperature (LST) is measured by

thermal infrared sensors and satellite images.

One of the challenges for UHI studies is the limited number of

meteorological stations, which makes it impossible to analyze spatial

disturbed within the city due to its lack of spatial coverage. Thus, studies

which use meteorological data can only analyze the difference between

urban and rural stations. However, it still has limitations, due to elevation

difference between stations, surrounding areas, land cover and openness

of the station in terms of constant wind direction. On the contrary, with

the remote sensing data it is possible to cover all the urban areas. With

evolution and improvement of remote sensing techniques, analyzing UHI

from satellite images up to 30 m horizontal resolution is achievable. For

instance, Landsat thermal infrared bands have been utilized in several

researches for urban heat island analyzes. According to a historical review

related to surface urban heat island studies using satellite images, 53 %

studies have used Landsat images (Zhou et al., 2018).

Many researches have demonstrated a correlation between urban heat

island and urbanization. However, due to differences between image

classification methods and accuracy, most studies are not comparable. In

order to deal with this issue, researchers proposed LCZ local climate

zones to classify images based on the thermal properties (Stewart and

Oke, 2012). Although this is a significant advancement for SUHI research,

since researchers use different data to create LCZs and accuracies are

varied, their comparability is still a challenge. The most common

approach for image classification is using the same image as LST retrieval.

However, in the case of using several images to represent a period, which

image should be selected is questionable. Another way to deal with this

issue is using a common land cover data as CORINE Land Cover initiated

by the European Environment Agency. This land cover data was used by
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several researchers to analyze the relationship between land cover and

SUHI, and found that urbanization caused increase in SUHI

(Stathopoulou and Cartalis, 2007; Majkowska, Kolendowicz, Półrolniczak,

Hauke and Czernecki, 2016 ; Lin, Jim, Deng and Wang, 2018).

The aims of this case study are as follows: (1) to analyze the

spatiotemporal changes in land cover using CORINE land cover map in

the years 1990, 2000, 2006 ,2012, 2018; (2) to derive land surface

temperature from Landsat time series (Landsat 5 ™, Landsat ETM+,

Landsat TIR/OLI); (3) to investigate the spatiotemporal distributions and

relationships between land cover and UHI throughout the study period;

(4) to examine the effects of land cover change on the change of urban

heat island. The study area, Prague covers an area of 49.613 hectares with

1.301.135 inhabitants, as the most populated city of Czechia ("Statistics

VDB", 2019). Due to its low elevation, especially in the city center, the city

is vulnerable to UHI effect.

2.1 Methods

Following softwares has been used in this study; ArcGIS 10.5.1 (ESRI) for

geospatial analysis; ENVI software was used for image pre-processing and

retrieval of LST and R studio is used for raster analysis. A vector file

which contains the administrative border of Prague was used to delineate

the study area for CORINE and Landsat data.

2.1.1 Analyzing land cover changes from CORINE

To analyze land cover changes, the CORINE land cover data, downloaded

from Copernicus Land Monitoring Service’s website, was used (CORINE

Land Cover, 2023).

The CORINE Land Cover (CLC) data for the periods 1990, 2000, 2006,

2012 and 2018 were chosen for land cover analysis. The CLC data have 44

land cover classes, however these classes were reclassified for this study

based on their thermal similarities (see Table 2.1).

In order to demonstrate the distribution of land cover, land cover

fractions relationship with distance from the urban center was analyzed

by using the schema in Figure 2.1.
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Table 2.1. Reclassified CORINE land cover classes used for the study.

CORINE Land Cover Classes Reclassified

Classes

Level I Level II

1 Artificial

Surfaces

11 Urban fabric 11

12 Industrial, commercial and transport

units

12

13 Mine, dump and construction site 13

14 Artificial, non-agricultural vegetated areas 14

2 Agricultural

Areas

21 Arable land

20

22 Permanent crops

23 Pastures

24 Heterogeneous agricultural areas

3 Forest and

Seminatura

l Areas

31 Forests

30

32 Shrub and/or herbaceous vegetation

associations

33 Open spaces with little or no vegetation

Figure 2.1. Land cover fractions against distance from the urban center

accumulation of all periods.
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2.1.2 Retrieving of LST from Landsat

In this study, Landsat 5 ™, Landsat ETM+, and Landsat TIR/OLI satellite

images were obtained from the earth explorer website.

(https://earthexplorer.usgs.gov/).

Because the UHI effect is more developed during the summer season,

images were chosen between June to September. The study period is the

same as CORINE land cover data (1990, 2000, 2006, 2012, 2018) and for

each period one consecutive years are included so for each period three, in

total fifteen remotely sensed images were used. The images selection

criteria was the hottest and cloudless days in the summer season (less

than 3% of the study area). A list of input Landsat images and acquisition

times are provided in Appendix A (Table A1).

In order to retrieve LST, the Image Based method (IBM) based on the

Landsat user’s book, was used (Lin, Jim, Deng and Wang, 2018; Landsat

8 users’ book, 2019).

Prior to LST calculation, clouds and cloud shadows which have a direct

effect on land surface temperature, were masked using Landsat quality

bands (Avdan and Jovanovska, 2016).

Firstly, before calculating brightness temperature, Digital Number (DN)

values were converted to radiance with the following formula

(Harrisgeospatial.com, 2017):

Lλ = 𝐺𝑎𝑖𝑛 ∗ 𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 + 𝑂𝑓𝑓𝑠𝑒𝑡

Lλ= Radiance in units of W/(m2 * sr * µm)

All images were downloaded as GeoTIFF with Metadata format and gain

and offset values were obtained from the image's metadata. Accordingly,

the spectral radiance values were converted to top of atmosphere (TOA)

brightness temperature (Landsat 8 users’ book, 2019):
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𝑇
𝐵

=
𝐾

2

𝑙𝑛(1+
𝐾

1

𝐿
λ

)

where is top of atmosphere brightness temperature (K), L is TOA𝑇
𝐵

spectral radiance (Watts/( m2 * srad * μm)), K1 and K2 are band-specific

thermal conversion constants. Table 2.2 shows the constants, which were

used in this study for each different satellite. These values were obtained

from the metadata.

Table 2.2. The list of K1 and K2 constant values

Thirdly, the NDVI threshold method was implemented. The brightness

temperature obtained in the previous stage is also called black body

temperature. Given this name, the temperature represents an object

which absorbs all of the radiation, thus correction of spectral emissivity

based on real object properties is needed. With using NDVI threshold

method, image emissivity can be calculated as 3 different class regarding

their NDVI values: If NDVI value is above 0.5 it represents dense

vegetation and emissivity value is 0.99, and lower than 0.2 NDVI value

represents bare soil and emissivity value is 0,97 and if NDVI value is

range between 0.2 and 0.5 it represents soil/vegetation mixed area and

emissivity value is calculated by following formula (Giannini et al., 2015) :

ε = ε
𝑠

* (1 − 𝑃𝑉) + ε
𝑣

* 𝑃𝑉

Where ɛs = 0,97 and ɛv = 0,99 and:

38

Units Watts / ( m
2
* srad * μm Kelvin

Constant K1 K2

Landsat 5 607.76 1260.56

Landsat 7 666.09 1282.71

Landsat 8*

* Band 10

774.89 1321.02



𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼

𝑚𝑖𝑛

𝑁𝐷𝑉𝐼
𝑚𝑎𝑥

 − 𝑁𝐷𝑉𝐼
𝑚𝑖𝑛

) 2

Where NDVImin = 0,2, NDVImax = 0,5)

Fourthly, emissivity correction formula was applied using the emissivity

values from the previous step, NDVI threshold method, with the following

formula (Zhang et al., 2013):

𝑇
𝑠

=
𝑇

𝐵

1+(λ𝑥𝑇
𝐵

/α)𝑙𝑛ε

where: Ts is surface radiant temperature in Kelvin (K), TB is black body

temperature in Kelvin (K), λ is wavelength of emitted radiance, and α =

h.c/ (1.438 × 10−2 mK) (where h is Planck's constant (6.626 × 10−34 J

s−1), c is the Velocity of light (2.998 × 108 m s−1), k is Boltzmann's

constant (1.38 × 10−23 J K−1), and ε = Surface emissivity).

Finally, the temperature values were converted to Celcius with the

following formula:

LST°C= LSTK - 273.15

After retrieval of LSTs were completed, to compare the temperature

variations between the images, line graphs were created from the mean

temperature of each image.

2.1.3 Analyzing spatiotemporal changes of LST

Firstly, all LSTs were normalized by using the min-max normalization

method.

LSTN= (LSTi- LSTmin ) / (LSTmax-LSTmin )

where LSTN is the normalized value of pixel i; LSTi is the LST of pixel i;

LSTmax is the maximum LST and LSTmin is the minimum LST in the

image. Normalized LSTs were multiplied by 100 to simplify

interpretation.

Secondly, three consecutive images for each period were averaged and

LST maps were created.
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2.1.4 Analyzing spatiotemporal changes of SUHI

and LC

In order to delineate UHI areas, various UHI indices have been used in

literature. In this study, the following formula which is created based on

the definition of UHI, temperature difference between urban areas and

the surrounding rural areas in the city’s administrative boundary (Feng,

Zhao, Chen and Wu, 2014) divided by the standard deviation, was used :

SUHI = Urban - Non-urban / Standard deviation

where Urban is represented by urban fabric; industrial, commercial and

transport units; mine, dump and construction site. Non-urban areas are

represented by artificial, non-agricultural vegetation areas; agricultural

areas, forest and semi natural areas.

The index was applied to all images (15 images of 28 years from 1990 to

2018) for several analyzes. Firstly, the SUHI values were used to analyze

the correlation between urban fraction and UHI relationship. Secondly,

the SUHI changes against two different land cover; urban and agriculture

were analyzed for all periods.

Finally, in order to analyze spatial distribution of SUHI areas,

accumulated land cover change fractions against distance from the urban

center were compared.

2.1.5 Classification of SUHI

Although min-max normalisation was applied, due to differences in

weather conditions among the selected images, absolute LST values are

not directly comparable. In order to eliminate the temporal variability of

weather, Jenks Natural Break classification have been used for SUHI

studies to classify LST among different images (Lin, Jim, Deng and Wang,

2018: Peng, Xie, Liu and Ma, 2016: Weng, Liu, Liang and Dengsheng Lu,

2008). Thus, Jenks Natural Break classification was applied to each

image. This classification sets class intervals with iterative processes, until

goodness of variance fit is maximized, so that variation within classes are

minimized and variation among classes are maximized (Jenks, 1967).

Each image was classified in five temperature categories as hot, warm,
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neutral, cool, cold which adapted from the seven-point scale (ISO 10551,

1995) temperature classes.

The classified three consecutive LST values were merged using cell

statistics for each period. Overlay statistic was chosen as median, which

assigns the median value for each pixel on a cell-by-cell basis ("How Cell

Statistics works—Help | ArcGIS for Desktop", 2019). Thereby extreme

values among the each period were refrained.

2.1.6 Relationship between SUHI and land cover

changes

To better understand the relationship between SUHI and land cover, the

CORINE Land Cover Change (CHA) so called change layer product was

used. The reason for using CHA instead of change between CLC is that

change layers were created for the comparison purpose and has a higher

resolution (minimum mapping unit 5 ha, for CLC 25 ha) than CLC. The

comparison was conducted between every two consecutive periods by

using the CHA product. The UHI values for every two consecutive periods

extracted by the corresponding CHA mask.

The comparison was conducted between every two consecutive periods by

using the CHA product. The UHI values for every two consecutive periods

extracted by the corresponding CHA mask.

Originally, 35 different land cover changes formed between the five

periods. However, to make the analysis more effective, based on the

classification created for this study (Table 1), the CHA maps were

classified into 7 different classes: interchanged, urban to green urban,

rural to green urban, urban to rural, unchanged, urbanized. Interchanged

indicates changes within the artificial surfaces (11,12,13). Urban to green

urban indicates changes from artificial surfaces (11, 12, 13) to green urban

(14). Rural to green urban indicates changes from rural areas (20) to

green urban (14). Urban to rural indicates changes from artificial surfaces

(11, 12, 13) to rural areas (20) and forest and semi-natural areas (30).

Unchanged indicates the changes between the level II categories.
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Urbanized indicates changes from rural areas (20), green urban (14),

forest and semi-natural areas (30) to artificial surfaces (11,12,13).

2.3 Results and Discussion

2.3.1 Spatiotemporal changes in land cover

Figure 2.2. The spatial pattern of land cover maps for 1990 and 2018.

Figure 2.2 reveals that there have been no distinctive changes between

1990 to 2018. The most prominent change can be seen in mine, dump and

construction sites which were replaced by urban fabric. Another

prominent difference can be seen in the north-east part of the city,

changes from arable land to industrial, commercial and transport units.

Overall, with the consideration of the city's size, in terms of spatial

pattern, the changes are not dramatic for a 28 year period.
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Figure 2.3. The ratio of relative land cover changes compared to 1990 (right).

Multitemporal analysis of the land cover changes of all periods relative to

1990, is displayed in multiple line graphs ( Figure 2.3). Mine, dump and

transport units decreased rapidly until 2000, fluctuating between 2006

and 2012, though there was an overall decrease of nearly 333%. The graph

shows that there has been a gradual increase in urban fabric, industrial,

commercial and transport units and for all periods. On the contrary, it is

shown that agricultural areas decreased steadily, though the rate of

decrease declined for the period 2012-2018. Forest and semi natural

areas, increased slightly until 2006 and decreased for the rest of time

span, so overall increase of 1%. Artificial non-agricultural vegetation areas

increased, though there was a slight decrease between 2012-2018.

Overall, for the period 1990-2018; urban, industrial and artificial

vegetated areas have been increased by replacing the agricultural areas

and mine, dump and construction sites.

2.3.2 Spatiotemporal changes of LST

Figure 2.4 shows the LST patterns in 1990 and 2018. Although the spatial

pattern of SUHI for these periods are similar, it can be seen that the

highest LST areas were expanded between two periods. Especially the

northeast and northwest part of the city, which is categorized as

industrial, commercial and transport units (see Figure 2.3). Accordingly,

it can be said that LST increases parallel to expansion of artificial
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surfaces. However, LST patterns are not distinguishable from these maps

and detailed interpretation is not possible. This limitation reveals the

necessity of further classification.

Figure 2.4. Spatial patterns of the LST for Prague for 1990 (left) and 2018

(right)

Figure 2.5. SUHI intensity and urban fraction relation, all images.

Correlation analysis between urban fraction and SUHI revealed a

significant correlation (see Figure 2.5).

44



Figure 2.6. SUHI intensity changes against distance from the urban

center, all images.

Figure 2.6 shows the SUHI intensity decreases with the distance from the

urban center. In order to analyze the effect of land cover changes, SUHI

intensity changes against land cover fractions were compared for all

periods (see Figure 2.7). The results show that SUHI intensity and

agriculture areas have a negative relationship. Conversely, SUHI intensity

and urban fabric has a positive relationship.

Figure 2.7. UHI intensity changes against land cover fractions, all periods.
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2.3.3 Surface Urban Heat Island Intensity

The results of the classified SUHI intensity analysis for 1990 and 2018 are

displayed in Figure 2.8. The SUHI spatial patterns show that hot regions

are highly clustered in the urban center, along the river and radiated

dispersedly around it. From 1990 to 2018 the hot regions are expanded

and surrounded by warm regions extensively. Fig. 10 also demonstrates

the extent of SUHI intensity classes and the graph shows that there has

been a gradual increase in hot and warm regions contrary to cool and

cold, between 2006 and 2018.

Figure 2.8. Spatial patterns of the SUHI intensities for Prague for 1990

(left) and 2018 (right).

Figure 2.9. SUHI intensity changes.
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Compared to the land cover maps, the similarity between land cover

pattern and SUHI classes is evident. The method used in this study, to

combine classified SUHI maps with using cell statistics median choice,

can be used as a viable alternative for dealing with the issue of using

several images to represent a period.

2.3.4 Surface Urban Heat Island Intensity

Figure 2.10. Changed areas between 1990 to 2018.

The results of the difference in land cover fractions against distance from

the urban center analysis is displayed in Figure 2.11. The graph shows that

a significant proportion of land cover changes were formed mainly on the

outskirts of the city, between 9 km and 12 km distance from the center.

However, fluctuations start at the 5 km distance and continue till the end

of the city boundary. Similarly, the spatial distribution of the changes in

the study area shows that the changes were formed far from the city

center with various sizes and proximity to each other (see Figure 2.10).

These results indicate the peri-urbanization that mostly increases the

extent of the SUHI area.
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Figure 2.11. Land cover fractions against distance from the urban center,

accumulation of all periods (left).

Table 3 summarizes UHI classes change by land cover change between the

five periods. In most cases, interchanged areas didn’t affect UHI level

except changes to industrial, commercial and transport units which

elevated UHI. Similarly, two thirds of urban to green urban changes

didn’t affect UHI while one third of lowered UHI. Likewise, changes from

urban to rural areas lowered UHI. On the contrary, three fourths of

urbanized areas elevated UHI up to two levels while one fourth didn't. On

the other hand, unchanged areas didn’t affect UHI.

Overall, the results of the changes from artificial surfaces to green urban

and rural lowered UHI, conversely, changes from rural to artificial

surfaces elevated to UHI.

Spatial distribution of these changes are shown in Fig.11, the location and

size of land cover changes are varied. Interestingly, the results show that

the same category of changes effect on UHI varies from no change to up to

two level change. This can be explained by other factors which affect the

formation and intensity of UHI such as surrounding areas, topography

and sky view factor, weather conditions (wind direction and speed). In

accordance with the present results, previous study (Wu, Zhang and Zang,

2019) have demonstrated that UHI depends not only on land cover but

also elevation, population density of the location. However, the results of

48



this study do not explain the other factor which affects the UHI. Further

research, which takes them into account, will need to be undertaken.

Table 2.3. Land cover changes (old and new land land cover) and

corresponding SUHI classes.
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2.4 Conclusion

This paper has analyzed the effect of land cover changes on the Urban

Heat Island (UHI) phenomenon in Prague. The analysis utilized CORINE

land cover and Landsat images from the years 1990, 2000, 2006, 2012,

and 2018. The results indicate that arable areas have been progressively

replaced by urban fabric over the years, leading to an increase in the

Surface Urban Heat Island (SUHI) level.

Interestingly, the majority of these land cover changes did not occur in the

city center but rather at a distance of 9 km to 12 km from it. This

peri-urbanization, or urbanization in the hinterland of the city, resulted in

an expanded extent of the hot and warm SUHI classes. A comparison of

land cover changes and SUHI classes revealed that the effect of the same

land cover changes on SUHI varied across different locations.

In conclusion, both qualitative and quantitative analysis show that the

extent of SUHI in Prague has increased as a result of peri-urbanization. It

is recommended that urban planners and decision-makers consider the

impact of land cover change, along with other factors affecting SUHI, in

their planning and decision-making processes. Furthermore, the adoption

of green infrastructure and sustainable urban planning strategies could

potentially mitigate the effects of SUHI, enhancing the livability and

resilience of urban areas in the face of climate change.
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2.5 Appendix A

Table A.1. List of Landsat images and acquisition times.
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Number Date GMT+2 GMT

1 19910706 11:20 09:20

2 19910807 11:20 09:20

3 19910816 11:14 09:14

4 19990705 11:28 09:28

5 20000605 11:27 09:27

6 20000620 11:48 09:48

7 20050603 11:38 09:38

8 20050728 11:45 09:45

9 20070625 11:44 09:44

10 20110604 11:40 09:40

11 20130727 11:52 09:52

12 20130803 11:59 09:59

13 20170611 11:56 09:56

14 20170620 11:50 09:50

15 20190626 11:50 09:50



Chapter III

Case Study II: Effect of COVID-19

Lockdown on Urban Heat Island

Dynamics in Prague, Czechia

Tugba Dogan, Aleš Urban, Martin Hanel
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Abstract

Urban heat island (UHI) is a well-known phenomenon adversely affecting

human health and urban environments. The worldwide COVID-19

lockdown in 2020 provided a unique opportunity to investigate the effects

of decreased emissions of air pollution and anthropogenic heat flux (AHF)

on UHI. Although studies have suggested that reduced AHF during

lockdown decreased atmospheric UHI (AUHI) and surface UHI (SUHI),

these results contain inherent uncertainties due to unaccounted weather

variability and urban-rural dynamics. Our study comprehensively

analyzes the impact of the COVID-19 lockdown on AUHI and SUHI in

Prague, Czechia. By selecting days with similar weather conditions, we

examined changes in mean SUHI using MODIS satellite images and in

AUHI based on air temperature from Prague weather stations for the

Lockdown period during March–April 2020 versus a Reference period

from March–April 2017–2019. Our results show that, in comparison to

the Reference period, the Lockdown period was associated with a 15% (0.1

°C) reduction of SUHI in urbanized areas of Prague and a 0.7 °C decline

in AUHI in the city center. Additionally, the observed decreases in

satellite-based Aerosol Optical Depth and Nitrogen Dioxide by 12% and

29%, respectively, support our hypothesis that the weakened UHI effects

were linked to reduction in anthropogenic activities during the lockdown.

Revealing the largest decrease of mean SUHI magnitude in the periphery

of Prague having predominantly rural land cover, our study emphasizes

the need to consider the effects of urban-rural dynamics when attributing

changes in SUHI to AHF. Our findings provide additional insights into

the role of reduced anthropogenic activities in UHI dynamics during the

COVID-19 lockdown and offer policymakers a comprehensive

understanding of how the complex interaction between urban and rural

microclimate dynamics influences the SUHI phenomenon.

Keywords: urban heat island; surface urban heat island; anthropogenic heat
flux; land surface temperature; COVID-19 lockdown

53



3.1 Introduction

Coronavirus disease (COVID-19) caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of

Hubei Province, China, early in December 2019, then spread globally

within several months. The World Health Organization declared the

COVID-19 outbreak a pandemic on 11 March 2020. Extraordinary

measures were implemented around the world to slow the spread of the

virus, ranging from closures of services, schools, and universities to

national curfews.

The implementation of COVID-19 lockdown measures led to a significant

reduction in human activities and mobility. This, in turn, caused a

decrease in anthropogenic emissions, which subsequently led to a rapid

improvement in air quality in locations across the globe (Muhammad et

al., 2020; Kumari and Toshniwal, 2020; Liu et al., 2021; Venter et al.,

2020). For example, based on the Google mobility index and satellite data

(Sentinel-5P), 90% reduction in mobility and 30% decline in NO2

emissions were observed in six countries across the northern hemisphere

due to lockdowns in March 2020 (compared to March 2019) (Muhammad

et al., 2020).

Similarly, studies using ground observations reported as much as 34%,

47%, and 64% reductions in PM2.5, PM10, and NO2 concentrations,

respectively, in cities across the globe due to restrictions on

anthropogenic emission sources during the lockdown (Muhammad et al.,

2020; Kumari and Toshniwal, 2020; Liu et al., 2021; Venter et al., 2020).

Furthermore, reduction in CO2 emissions during the lockdown during

March–April 2020 has been documented on global (8.8%, (Liu et al.,

2021)) as well as local scales (e.g., a drop by 30% in the San Francisco Bay

Area (Potter and Alexander, 2021)). The drop in CO2 was attributable

primarily to changes in traffic (Liu et al., 2021; Potter and Alexander,

2021).
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Similar to the changes in air pollution, anthropogenic heat emissions

likely decreased during the lockdown, as they are closely associated with

the same human activities that release air pollutants. Anthropogenic heat

flux (AHF) is one of the well-known causes of the urban heat island (UHI)

effect (Fan and Sailor, 2005) and an important input parameter of the

surface energy budget in urban areas (Oke et al., 2017). Unlike air

pollution emissions and concentrations, however, AHF is challenging to

measure; it needs to be estimated from such other proxy variables as air

pollution (Lee et al., 2014), energy consumption data (Chen and Hu,

2017), or land surface temperature (LST) (Firozjaei et al., 2020). The

near-surface thermal microclimate of a given site is defined by the surface

energy balance equation with the following equation:

Q* + QF = QH + QE + ΔQS + ΔQA (1)

where Q* is net all-wave radiation, QF is AHF density, ΔQS is net heat

storage, ΔQA is net advective heat flux, QH is sensible and QE is latent

heat flux density (Oke, 1987; Oke et al., 2017). The two turbulent heat flux

densities, sensible and latent heat flux, facilitate the energy transfer

between the surface and the atmosphere (Lee, 2017; Oke et al., 2017).

AHF is an added energy input to the energy balance that impacts

primarily thermal characteristics of the urban canopy layer. However,

authors agree that AHF is also an important driver of LST due to

enhanced heat exchange between the atmosphere and urban land surfaces

(Feng et al., 2023; Hamilton et al., 2009; Lee, 2017; Liu et al., 2022; Oke

et al., 2017; Firozjaei et al., 2020). Hence, it is hypothesized that the

reduction in AHF during the COVID-19 lockdown led to a weaker UHI

effect and a decreased magnitude of the surface UHI (SUHI) (Feng et al.,

2023; Meng et al., 2023; Mijani et al., 2023; Pal et al., 2021).

Since the outbreak of the COVID-19 pandemic, there has been a growing

body of literature on the effects of lockdowns on UHIs (Chakraborty et al.,

2021; Liu et al., 2022; Parida et al., 2021). A recent review of 29 studies

on urban temperature anomalies during the COVID-19 lockdown revealed

a decrease in UHI, LST, or SUHI, respectively, in the majority of 46 cities

across various regions and climate zones (Wang and He, 2023). The

average LST decrease in developed (i.e. mid- and high-latitude) countries
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was smaller than that in developing countries, which is in line with

findings from China (Liu et al., 2022) where the UHI-decline effect

related to the lockdown weakened with increasing latitude.

Another global study suggests that while there was a substantial decrease

in the SUHI magnitude of Chinese cities, the results from Europe and

USA were less significant (Sismanidis et al., 2023). Similar patterns were

observed in a study comparing LST in Europe and North America during

March–May 2020 to the same period in 2015–2019 (Parida et al., 2021).

The decrease in LST was generally larger in urban areas compared to

rural landscapes, suggesting weakening SUHI effects, especially during

nighttime. On the contrary, daytime LST increased over large parts of

Europe due to less attenuation of solar radiation by atmospheric aerosols

and anticyclonic synoptic conditions over Europe during the lockdown

period (Parida et al., 2021; Glocke et al., 2023). These findings highlight

the importance of taking into account the spatial and temporal variability

in synoptic conditions when analyzing and comparing temporal changes

in SUHI.

Indeed, while the aforementioned studies offer important insight into

large-scale effects of the COVID-19 lockdown on LST and SUHIs, they

mostly neglect within-city differences between urban and rural land cover

types and the way they are affected by day-to-day weather variability

(Parida et al., 2021; Glocke et al., 2023). Distinguishing between urban

and rural microclimate dynamics and controlling for the effect of natural

weather variability are, however, crucial steps in identifying changes in

SUHI attributable to variations in AHF (Chakraborty et al., 2021). While

urbanized areas are largely affected by anthropogenic heat, rural areas are

more susceptible to changes in weather conditions. Nevertheless, most

studies do not take into account this effect when assessing impacts of

COVID-19 lockdowns on SUHIs and attribute all changes in cities to

anthropogenic heat. In order to attribute the changes in SUHI more

precisely to AHF variability, it is necessary to control for the effects of

synoptic conditions. This can be achieved via a rigorous process for

selecting study period based on synoptic conditions and evaluating the

results by taking into account the local dynamics as well.
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In this study, we aim to assess the effect of the COVID-19 lockdown

during March 2020 on UHI dynamics in Prague, Czechia. In order to

determine the changes in SUHI magnitude, we used MODIS satellite

images for 8 selected days within the main lockdown period during

March–April 2020 and 10 selected days during March–April 2017–2019.

To ensure consistent synoptic conditions, only days with similar weather

parameters were selected. SUHI magnitude was defined as the difference

between urbanized areas (i.e., areas within the city having artificial land

covers) and selected rural areas (i.e., areas within the city having typically

rural land covers). Furthermore, to provide a more comprehensive picture

of UHI patterns during the lockdown period, we cross-validated the

change in SUHI magnitude during the lockdown period with i)

atmospheric UHI (AUHI) changes calculated from selected Prague

weather stations, and ii) changes in air pollution concentrations obtained

from Sentinel-5’s TROPOMI and MODIS’s Aerosol Optical Depth

products.

Our study presents a novel approach to decouple confounding factors

from the potential impact of AHF variations on UHI dynamics. First, we

introduced robust image selection criteria to minimize the effect of

synoptic variability and changes in global radiation during the lockdown

period. Furthermore, by distinguishing urbanized and rural areas within

the city boundaries, we were able to control for the confounding effects of

contrasts and interactions between urban and rural microclimates

(referred to as urban-rural dynamics) on the changes in SUHI magnitude.

Finally, by investigating the effect in zones of Prague, we were able to

explain the association between the level of urbanization and other factors

influencing UHI. Employing this approach, our study provides new

insight into attributing UHI dynamics during the COVID-19 lockdown to

the role of AHF while considering intra-urban microclimate variations

between urban and rural areas.
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3.2 Materials and Methods

3.2.1 Study Area

Prague is the capital city of Czechia. It is located at approximately 50° 4'

north latitude and 14° 25' east longitude. The city covers an area of 496.2

km². According to the Köppen classification, Prague experiences a

temperate oceanic climate (Cfb) that is characterized by distinct seasons

with relatively mild temperatures and moderate rainfall throughout the

year (Kottek et al., 2006). The population of Prague reached 1.33 million

in 2020, and this has not changed substantially in recent years (Czech

Statistical Office, 2023).

3.2.2 Data

Table 1 presents all datasets used in the analysis. For the assessment of

SUHI dynamics, we used daily LST variables obtained from NASA’s

Moderate Resolution Imaging Spectroradiometer (MODIS) program. The

CORINE Land Cover 2018 product was used to identify urban and rural

land cover categories within the city of Prague. Additionally, we employed

MODIS’s Aerosol Optical Depth (AOD) dataset and the Offline Nitrogen

Dioxide (OFFL NO2) product of Sentinel 5 Precursor to analyze changes

in air pollution concentrations. All remote sensing data were downloaded

and processed via the Google Earth Engine catalog.

Table 3.1. Datasets used in this study.
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The final analysis of LST and SUHI spatial dynamics was conducted in the

ArcGIS 11 software. Records of hourly temperature, cloud cover,

precipitation, and daily mean global radiation from four professional

weather stations in Prague (Praha-Karlov, Praha-Kbely, Praha-Libus, and

Praha-Ruzyne; Figure 1), managed by the Czech Hydrometeorological

Institute, were used to control for synoptic conditions and changes in

AUHI. Three concentric zones of Prague (Inner City, Outer City,

Periphery), based on urbanization level and demographic spatial patterns

(Ouředníček, 2022), were used to relate the changes in SUHI to

anthropogenic activities (Figure 3.1, Table 3.2).

Figure 3.1. Three concentric zones of Prague (Ouředníček, 2022) and locations

of weather stations used in this study.
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Table 3.2. Characteristics of the three concentric zones of Prague as defined in

Figure 1 (Ouředníček, 2022).

3.3. Methods

In order to assess effects of the COVID-19 lockdown on Prague’s UHI, we

compared temperature and air quality conditions during the lockdown

period with a selected reference period following the workflow in Figure

2. This workflow was implemented for the lockdown and reference

periods separately. The results were then compared. Lockdown-related

changes in SUHI were compared in the three concentric zones of Prague

as described in Table 3.2. As the highest population density is in Inner

City and the lowest is in Periphery, the largest decrease in SUHI can be

expected in Inner City followed by Outer City and the smallest in

Periphery. Details of the individual steps are explained below.
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Figure 3.2. Workflow of the study.

3.3.1. Determination of the Study Period and

Satellite Image Selection

Consistent with other countries’ prevention strategies, declaration of a

lockdown was necessary to limit the spread of COVID-19 after its

outbreak in Czechia. A state of emergency was declared on 14 March

2020. A countrywide lockdown with the most stringent measures began 2

days later and lasted until the end of April (Our World in Data, 2023).

Lockdown measures (including closure of services, schools, places of

employment, and retail sales; restrictions upon mobility between regions

and public gatherings; etc.) dramatically affected human lifestyles,

especially in urban areas. For example, data from Václav Havel Airport in

Prague report an almost 80% decrease in the number of checked-in

passengers in 2020 compared to 2019 (and the same decrease in the

number of flights). This not only affected traffic at the airport per se but

also influenced general tourism-related mobility in the city (Letiště Praha,

2023). Accordingly, overall traffic intensity in Prague dropped by more

than 30% during the spring of 2020 compared to usual rates in 2019

before returning to nearly usual levels in the summer (Ročenka dopravy

Praha 2020, 2023).
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To identify changes in SUHI magnitude due to the lockdown, we selected

MODIS Aqua satellite images acquired during the effective lockdown

period defined from the start of the most stringent measures (16 March)

to the 3rd wave of the loosening of measures (27 April), after which the

relaxation plan accelerated (Our World in Data, 2023). To ensure that the

comparison of lockdown versus reference periods was minimally affected

by weather variability, we selected satellite images reflecting weather

characteristics as similar as possible. In the first step, we filtered satellite

images with total cloud cover over the Prague area with less than 45%

coverage and used their temperature range (as defined by daily

temperature data from Prague weather stations) as a benchmark to filter

images in the reference period. In addition, conditions antecedent to

image acquisition were also considered. Therefore, images with high

cloud cover before acquisition and/or precipitation recorded a day before

acquisition were excluded from the analysis. Additionally, we used daily

global radiation records as a proxy for solar radiation to control for

changes in radiative fluxes due to natural covariation of weather patterns

and atmospheric composition during the lockdown (Parida et al., 2021;

Liu et al., 2022). Due to the limited number of available images and a lack

of established thresholds in the literature for similar studies, we listed

relevant variables for the available images and excluded outliers. This

way, we ensured that background conditions in the two periods were

comparable and the observed changes in LST were attributable to changes

in human activities and AHF.

As a result, 8 satellite images from the period 14 March–27 April were

selected and defined as Lockdown. The dates of selected satellite images

and their temperature and global radiation values are listed in Table A1.

To avoid significant changes in land cover, we only chose days from the

previous 3 years, 2017, 2018, and 2019, as the reference period. Using the

same criteria as for Lockdown, 10 images from the previous three spring

seasons (March–April 2017–2019) were selected and defined as

Reference (Table B1). The same days were selected for the comparison of

air temperature data (Section 3.4).
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3.3.2. Land Surface Temperature Estimation

Land surface temperatures were derived from the Aqua satellite’s

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor

(MYD11A1, version 6.1) with 1 km resolution over Prague. Aqua satellite

images were acquired at ∼13:30 local solar time. For LST, the

“LST_Day_1km” dataset and for quality assessment, the “QC_Day” layer

were used. Nighttime LST data was not used due to high cloud

percentages. Detailed methods for the LST algorithm and layers used are

described in the MODIS documentation (Wan, n.d.).

3.3.3. Surface Urban Heat Island Magnitude

Calculation

To quantify the dynamics of SUHI within a city, selection of the reference

rural land cover area requires careful consideration. In this study, we used

Pastures (class 231) and Transitional woodland-shrub (class 324) land

cover types from the CORINE land cover data (CORINE Land Cover,

2023) as reference LSTrural (Oke, 1987). Thus, day-to-day weather

variability was captured and the thermal characteristics of individual

images were more comparable.

The SUHI magnitude of each MODIS image was calculated according to

the following formula:

SUHI magnitude = LSTimage – LSTrural, (1)

in which LSTimage represents the LST in each pixel of the selected image

and LSTrural is the mean value of the rural reference of the corresponding

image.

Median SUHI magnitude values were computed for all images from the

Lockdown period (SUHIlockdown) and the Reference period (SUHIreference).

Consequently, SUHIlockdown and SUHIreference values were extracted

separately for “urbanized areas” (defined as CORINE land cover classes

continuous and discontinuous urban fabric, industrial or commercial

units, road and rail networks and associated land, port areas, and

airports) and changes in SUHI magnitude between Lockdown and

Reference periods related to urbanized areas in the three concentric zones
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of Prague (see Figure 1) were compared. In this way, changes in SUHI

were quantified while controlling urban-rural dynamics and the level of

human activities.

3.3.4. Analyzing Atmospheric Urban Heat Island

We used the mean hourly temperature records at 13:00 and 14:00 CET

(T14) from the four Prague weather stations (Figure 1) to analyze the

changes in daytime AUHI during Lockdown. Records at 13:00 and 14:00

CET were used, as these are most consistent with the time of MODIS

image acquisition. Because Ruzyne and Kbely are stations situated at two

Prague airports (i.e., their records might have been affected by changes in

their traffic load during the lockdown) and Karlov is located in Prague’s

city center near the main traffic artery called “Severojižní magistrála”, we

considered Libus a “rural” reference station least affected by

anthropogenic influences. Consequently, we quantified the potential

effect of Lockdown on temperatures in Karlov, Kbely, and Ruzyne, as

their average T14 anomalies (AUHI magnitudes) vis-à-vis Libus on days

included in the Lockdown and Reference periods (Table A1), respectively.

3.3.5. Analyzing Air Pollution

In addition to air temperature and LST, we analyzed two indicators of air

quality based on satellite data to verify the changes in anthropogenic

activities. We used the Copernicus Sentinel-5P TROPOspheric Monitoring

Instrument (TROPOMI) sensor to estimate the changes in NO2, and daily

MODIS Aerosol Optical Depth (AOD) to estimate changes in particulate

matter concentrations (LP DAAC - MCD19A2, 2023; Sentinel-5P OFFL

NO2, 2023).

For this purpose, we acquired images for the whole effective Lockdown

period (16 March–27 April). Likewise, for the Reference period, we used

the mean for the same period in 2017, 2018, and 2019 for MODIS AOD

but 2019 for TROPOMI NO2, as the latter product is not available from

previous years.
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3.4 Results

3.4.1 Atmospheric Urban Heat Island Analysis

Figure 3a shows the distribution of afternoon temperature (T14) observed

at Prague weather stations during the Lockdown and Reference periods.

On average, we observed lower temperatures for Lockdown than

Reference at all stations, except for Libus. Only the suburban station in

Libus was slightly colder during Reference, but the difference was

insignificant (less than 0.1 °C). This finding suggests that this station was

least affected by anthropogenic changes and can be used as a reference

station for the AUHI analysis.

Figure 3.3. a) Afternoon air temperatures (T14) at four Prague weather stations

during the Reference and Lockdown periods. b) Atmospheric urban heat island

(AUHI) magnitudes calculated as T14 difference between a given weather

station and the reference station in Libus. Box plots indicate medians and

interquartile ranges of the values. Gray points denote mean values across all

days in a given period at each station.

The results suggest that the AUHI magnitude decreased during Lockdown

by mean 0.5 °C. The most important change observed in Karlov suggests a

marginal (less than 0.1 °C) difference between the city center (Karlov) and

its outskirts (Libus) during Lockdown, compared to 0.7 °C in the
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Reference period (the change in AUHI magnitude was statistically

significant according to the two sample t-test with p-value < 0.05).

Although colder than Libus, the decrease in AUHI between Reference and

Lockdown was comparable (0.7 °C, p < 0.01) at Ruzyne, while at Kbely it

was only 0.4 °C (p = 0.1) colder.

3.4.2 Surface Urban Heat Island Analysis

While the results for AUHI suggested a significant decrease in UHI

magnitude during Lockdown in Prague, we observed smaller changes in

SUHI. Figure 3.4 shows the spatial distribution of SUHI magnitude in the

whole domain city of Prague during the Reference and Lockdown periods.

Both images indicated clear spatial clustering of areas with the largest

SUHI magnitude (up to 3.5 °C) in predominantly urbanized areas (i.e.,

near the city center and important transport corridors) while periphery

areas showed predominantly negative SUHI anomalies (by as much as

−4.0 °C).

Figure 3.4. Spatial distribution of surface urban heat island (SUHI) magnitude

during Reference (left) and Lockdown (right) periods in Prague based on Aqua

satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.

Figure 3.5 illustrates the spatial distribution of differences in SUHI

magnitude between Lockdown and Reference. While the result indicates

that some areas had stronger SUHI during Lockdown, mean SUHI
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magnitude in Prague was 0.2 °C lower during Lockdown (Figure A1a). To

investigate the potential effect of AHF, we analyzed the changes of SUHI

in urbanized areas only (Figure A1b, Figure 5). The mean difference in

SUHI magnitude between Reference and Lockdown in urbanized areas

was 0.1 °C (i.e., 15% decrease). Contrary to AUHI magnitudes, the

changes in SUHI magnitude were relatively small. However, histograms

in Figure A1 suggest a generally lower frequency of pixels with positive

SUHI magnitude during Lockdown. This suggests overall weakening of

spatial SUHI magnitude in Prague during Lockdown.
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Figure 3.5. Spatial distribution of SUHI magnitude difference in Prague (Lockdown

vs. Reference). Urbanized areas are brightened while rural areas are shaded.

Figure 3.6. Spatial distribution of SUHI magnitude difference (Lockdown vs.

Reference) in urbanized areas of the three concentric zones of Prague (Figure 3.1).
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Table 3.3. SUHI magnitude changes in the three concentric zones of Prague

during Lockdown.

To analyze SUHI magnitude changes in the context of urbanization level

and population density, a comparison was also made between the three

concentric zones of Prague. Figure 3.6 shows the spatial distribution of

SUHI magnitude differences in urbanized areas only. The SUHI

magnitude difference for the three zones is presented in Table 3.3.

The largest decrease in SUHI magnitude was observed in Periphery. As

this zone is characterized by the lowest population density and prevalence

of agricultural land cover and forests (according to CORINE land cover

classification: Figure A2), the SUHI magnitude was generally negative.

The largest SUHI magnitude differences in this zone are related to the

largest changes in the rural land cover types, especially in arable land and

forests (Figure A3). As rural areas are generally more susceptible to both

short-term (e.g., occurrence of rainy days before the image acquisition)

and seasonal weather variability (e.g., beginning of the

growing/seeding/harvesting season), we could observe the largest

variance in SUHI magnitude in these classes (Figure A3).

On the other hand, Periphery is greatly affected by the daily commute

from Prague suburbs to the city and intense flow of both national and

international traffic on the highway circuit around the city. Furthermore,

several industrial zones, such as a cement manufacturing plant in Radotín

(the cool spot in the southwestern part of Prague in Figures 3.5 and 3.6),

are located in Periphery. Thus, the changes in SUHI in this zone might

69



have been partly related to the significant drop in traffic intensity and

AHF in these areas during Lockdown. However, given the 1 km resolution

of MODIS images and linear character of the traffic-related activities, we

were not able to get more precise information and we assume that most of

the changes were related to the dynamics in rural areas within the city

boundaries.

A 17% decrease in SUHI magnitude was observed in Inner City. This

change was substantially smaller than that for Periphery. Inasmuch as

industrial and urban fabric (Figure A2) cover more than 70% of the total

area, however, and population density is highest in Inner City, we may

assume that the reduction in SUHI magnitude in this zone was driven

primarily by changes in human activities.

No significant change in SUHI was observed in Outer City, which can be

characterized as a transition zone between Periphery and Inner City.

Having a similar amount of industrial and urban fabric but higher

population density (4.5 times as great) compared to Periphery, Outer

City’s negligible change in SUHI magnitude suggests that the decrease

observed in Periphery was related rather to changes in the rural areas’

dynamics than to AHF.

3.4.3 Air Pollution Analysis

In accordance with the AUHI analysis, a significant decrease in air

pollution concentration was observed during Lockdown. Figure 3.7 shows

differences in AOD and NO2 concentrations between the Lockdown and

Reference based on satellite data. Quantification of the changes in the

three concentric zones of Prague is presented in Table 3.4.
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Figure 3.7. Difference in NO2 (left) and Aerosol Optical Depth (AOD) (right)

concentrations (Lockdown vs. Reference).

Regarding NO2 concentrations, we observed an average decrease by 29%

during Lockdown in 2020 compared to the same period in 2019. The

decrease was largest in Inner City (3%), followed by Outer City (27%) and

Periphery (25%). As NO2 concentrations are strongly related to traffic,

these results support the hypothesis that SUHI magnitude changes in

Inner City were more related to AHF variability, while changes in

Periphery were driven by the rural dynamics.

Table 3.4. Difference in NO2 and Aerosol Optical Depth (AOD) concentrations in

the three concentric zones of Prague.

Similarly, our analysis revealed a mean 12% decrease in AOD during

Lockdown compared to the same period of 2017–2019. In contrast to

NO2, the largest decrease was observed in Periphery (13%), followed by

Outer City and Inner City (−12% and −11%), respectively. The generally
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smaller percentage decrease in AOD compared to NO2 may be attributed

to the longer reference period. Moreover, AOD is not a direct measure of a

pollutant; instead, it represents the optical thickness of aerosols along a

column of the atmosphere. Therefore, compared to the short-lived NO2,

AOD is more influenced by long-range transport and the prevailing

westerly winds in Prague that carry pollutants from the city center to the

east (Patino and Duong, 2021; Simulated historical climate and weather

data for Prague, 2023).

3.5 Discussion

In this study, we employed a comprehensive analytical approach to assess

the effect of the COVID-19 lockdown on UHI dynamics in Prague,

Czechia. We analyzed ground and satellite observations from the

March-April 2020 Lockdown period and the March-April 2017-2019

Reference period. This analysis quantified changes in mean AUHI and

SUHI magnitudes, as well as in air quality distribution, between the two

periods. Our findings show that the COVID-19 lockdown in Prague was

associated with: i) a 0.1 °C (15%) decrease in mean daytime SUHI

magnitude over urbanized areas, ii) a 0.7 °C decrease in mean afternoon

(13:00–14:00 CET) AUHI magnitude in the city center (Praha-Karlov

weather station vs. the reference station in Praha-Libus), and iii) a 29%

and 12% drop in mean NO2 and AOD concentrations, respectively, over

the city.

Regarding changes in air temperature, our findings are in line with prior

studies that observed weakened AUHI effects due to the COVID-19

lockdown. Similar to the results of our ground observations, an analysis

performed with a high-accuracy observational network in Ghent,

Belgium, revealed lower afternoon UHI magnitude (by as much as 0.4

°C/h) in the dense urban site during lockdown in 2020 as compared to

the reference years (Hamdi et al., 2022). Likewise, a study across 300

cities in China observed a mean 0.42 K decrease in daytime AUHI

magnitude due to lockdown (Liu et al., 2022).

Regarding SUHI changes, while some studies show a decrease similar to
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our findings (Chakraborty et al., 2021; Liu et al., 2022; Roshan et al.,

2021), others report an increase in SUHI effect during the lockdown

(Feng et al., 2023; Parida et al., 2021). This discrepancy results from the

large thermal variation for land surfaces, which depends largely on local

synoptic conditions and spatial distribution of land cover types (Glocke et

al., 2023). To better understand the underlying reasons for variations

among results in previous studies and to comprehend the impacts of

lockdown on SUHI and UHI better, the roles of anthropogenic heat and

rural dynamics need to be elaborated.

3.5.1 Role of Anthropogenic Heat

Despite the solid theoretical background on the importance of AHF for

UHI (Oke et al., 2017), the evidence of specific mechanisms linking

selected types of human activities with various aspects of UHI is limited

due to challenges in quantifying these associations. In mid-latitudes, AHF

has a distinct seasonal pattern, and it has been considered a dominant

contributor to UHI, especially during the cold part of the year. AHF is the

product of human activities such as transportation, industrial and

construction activities, heating, lighting, and human metabolism, and the

heat flux is dissipated through both sensible and latent heat (Oke et al.,

2017). The quantity and impact of these emission sources on UHI can

significantly vary throughout a city, influenced by the intensity of human

activities and the time of day. The amount of these emission sources and

their impacts on UHI may vary significantly across a city, depending on

the intensity of human activities and the time of day. For example,

temporal dependence of UHI magnitude on the weekly commuting

pattern has been documented in Australia (Earl et al., 2016), while

another study observed a significant increase in UHI magnitude related to

massive migration during the Lunar New Year celebrations in China

(Zhang et al., 2015).

Although emissions of anthropogenic heat affect mainly the canopy UHI

via enhanced sensible heat flux, SUHI is affected indirectly by modified

thermal and radiative properties of the atmosphere (e.g., urban

greenhouse effect) that intensifies the amount of heat emitted by the

atmosphere back to the surface (Liu et al., 2021; Oke et al., 2017).
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Therefore, studies have documented both long-term and short-term

associations between SUHI magnitude and reduction in human activities

(Alves et al., 2020; Firozjaei et al., 2020; Feng et al., 2021; Raj et al.,

2020; Zhou et al., 2014). For example, a study in eastern China observed

a positive correlation between SUHI magnitude and AHF (0.0275 °C
warming of SUHI per each 1.0 W/m2 increase in AHF), which was

estimated from energy consumption (Jin et al., 2020). Accordingly, prior

research documented a significant association between SUHI and AHF in

seven Chinese cities using a linear mixed-effect model (Qian et al., 2023).

Reduced mobility and transport of city dwellers have been considered to

contribute an important part of the reduction in AHF during the

COVID-19 lockdown (Liu et al., 2022; Wang and He, 2023). Data from

Prague suggest an 80% drop in checked-in flights at the Prague airport

and a 30% decrease in the city’s traffic intensity (Letiště Praha, 2023;

Ročenka dopravy Praha 2020, 2023). Accordingly, our results show a

29% and a 12% decrease in concentrations of NO2 and AOD, respectively,

during Lockdown. Transportation data and our findings on air pollution

support the hypothesis that the 0.1 °C (15%) decrease in mean daytime

SUHI magnitude over urbanized areas in Prague and 0.7 °C decline in

AUHI was driven by the decrease in AHF from human mobility during the

lockdown period. The larger decrease in AUHI than in SUHI magnitude is

in line with the indirect effect of AHF on SUHI. Similar to our findings, a

larger reduction of daytime AUHI (by a mean of 0.42 K) than of SUHI

(mean of 0.25 K) was observed during the COVID-19 lockdown in China

(Liu et al., 2022).

Previous studies using the MODIS LST product to identify effects of the

lockdown on SUHI revealed mean 0.20–0.41 K, 2 °C, and 0.25 K

decreases in SUHI magnitude in the North Indian River Plain

(Chakraborty et al., 2021), the Middle East (El Kenawy et al., 2021), and

China (Liu et al., 2022), respectively. Most authors attribute these

changes to reduced emissions of anthropogenic heat from traffic. For

example, researchers documented a mean decrease in NO2, AOD, and

SUHI, respectively, by 23.7%, 3.7%, and 19.2% in the United Arab

Emirates during the lockdown compared to the same period in 2019

(Alqasemi et al., 2021). A study analyzing 43 European cities, on the other
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hand, was not able to attribute the reduction of air pollution

concentrations to mobility changes during the lockdown, due to large

spatial variability dominated by meteorological patterns (Glocke et al.,

2023).

When comparing the lockdown period to previous years, however, these

studies considered the lockdown period as a whole, overlooking changes

in synoptic conditions. A recent study also illustrated that nighttime LST

in Paris and London were higher during the lockdown compared to 2019.

However, this change was primarily driven by natural variability (due to

higher temperatures during lockdown), and not related to changes in AHF

(Safarrad et al., 2022). Similarly, some parts of Europe experienced an

increase in LST from usual levels during the lockdown period (Parida et

al., 2021). The authors hypothesized that this warming was related to

anticyclonic weather conditions prevailing across a large part of Europe in

spring 2020 and decreased concentrations of aerosols, which enhanced

the amount of solar radiation incoming to the land surface. This could

have enhanced the positive radiation balance during the lockdown period

(Chakraborty et al., 2021; Chakraborty et al., 2023; Mazhar et al., 2021;

Revathy et al., 2021). These findings highlight the important role of the

natural variability of temperature and solar radiation that cannot be

attributed to variations in AHF during lockdown. As far as we know, our

study is the only one to analyze SUHI dynamics during the lockdown by

rigorously selecting MODIS satellite images based on comparable

synoptic conditions (i.e., taking into account similar temperature, cloud

cover, and precipitation) and considering global radiation (as a proxy for

solar radiation) (Appendix A). This approach ensured that our results

would be more robust in the face of confounding factors.

In terms of spatial variability, our findings indicate a relatively small

decrease in SUHI magnitude across the urbanized areas of Prague, while

it even increased in some parts. While the decline in SUHI magnitude in

urbanized areas was presumed to be linked to a decrease in AHF, this

might not be the case in some historical parts of the city that have been

within permanent traffic-restricted areas and/or pedestrian zones. In

these areas, the changes in SUHI could be more influenced by favorable

microclimatic conditions. Despite our efforts to mitigate the impact of
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changes in synoptic conditions through a rigorous selection of satellite

images and careful consideration of reference land cover types for SUHI

calculation, we acknowledge the possibility of their effects on our results.

On the other hand, the consistent spatial pattern of SUHI between the

Reference and Lockdown periods, along with generally small differences

observed between the two periods, underscore the robustness of our

method. This highlights the importance of considering possible

confounding factors when assessing the effect of lockdown on SUHI.

3.5.2 Role of Urban-Rural Dynamic

Most prior studies have either covered multiple regions or primarily

concentrated on large-scale effects. Although some of the previous studies

have acknowledged the effects of urban-rural dynamics when analyzing

the changes in SUHI (Chakraborty et al., 2021), they often neglected the

within-city dynamics between urban and rural land cover types when

interpreting their results. Therefore, the options to compare our results

with prior research are limited. For example, a 2°C decrease in SUHI was

observed in Paris during lockdown (Safarrad et al., 2022). However, the

spatial distribution of LST indicated a noteworthy temperature increase

in surrounding rural areas, suggesting that a significant part of the SUHI

decrease may have been attributable to increased LST in the rural areas.

Given that the study did not consider the role of rural-urban dynamics or

analyze the results in relation to development zones or urbanization, we

are unable to compare its findings with ours. To better understand the

role of urban-rural dynamics in the present study, we carefully

distinguished urbanized and rural areas within the city boundaries when

calculating the SUHI magnitude. Additionally, we investigated the

complex interactions by employing the three concentric zones of Prague

based on urbanization levels. As a result, we observed the largest decrease

of SUHI magnitude in the Periphery zone with its predominantly rural

land cover types. This is in line with some studies (Chakraborty et al.,

2021; Mijani et al., 2023), although others have reported a larger LST

decrease in urban areas compared to rural landscapes (Pal et al., 2021;

Roshan et al., 2021; Mijani et al., 2023).

The additional analysis of SUHI changes in individual land cover classes
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indicated a generally larger variance in SUHI magnitude for rural land

cover types, especially arable land and forests (Figure A3), compared to

urban land covers (Figure A3). The difference may arise from rural areas’

natural systems and water reliance, which heighten their susceptibility to

short-term and seasonal weather variations. These findings emphasize the

importance of considering the effects of urban-rural dynamics within

cities when attributing changes in SUHI magnitude to variations in AHF.

Although we tried to eliminate the effects of urban-rural dynamics on

urbanized areas of Prague, results for the urban land cover classes were

still affected by the “mixed pixels” problem (Peng et al., 2015). The pixel

values of urban areas, particularly those that are small and adjacent to

larger rural areas, may be influenced by the predominance of these

surrounding rural areas. This is because each MODIS pixel also contains

information from neighboring pixels (Peng et al., 2015). Hence, we may

assume that SUHI variability in Inner City was predominantly driven by

urban land cover characteristics and human-related activities, whereas

changes in Periphery were primarily driven by the dynamics of prevalent

rural land cover types, such as arable land and forests.

While previous studies provide knowledge and valuable insights, our

study suggests that considering confounding factors such as changes in

synoptic conditions and the urban-rural dynamics within city boundaries

may provide better estimates and understanding of the effect of the

COVID-19 lockdown on UHI and SUHI variations. Taking into account

these factors, our findings support the hypothesis that the observed

changes in SUHI magnitude within urbanized areas of the city were

driven by the decrease in anthropogenic heat release during the lockdown

period.

3.5.3 Limitations

We must acknowledge a few limitations of the study. First, due to lack of

data on spatial distributions of anthropogenic heat sources and the

amount of reduction in AHF during Lockdown, we were unable to solely

attribute all changes to anthropogenic heat. Similarly, we could not

quantify the specific impact of reduced AHF on the magnitude of SUHI.

To estimate the effect of AHF reduction related to human activity, we
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employed the three concentric zones of Prague that are based on the level

of urbanization and population density. While our approach enhances

understanding of potential effects of urban development and human

activities, we recognize that a more comprehensive understanding could

be achieved by incorporating data on anthropogenic heat sources.

In addition, as AHF depends on population density and economic

activities in the city (Lindberg et al., 2013), it is highly variable among

cities (Ahmed and Zan, 2022). This factor (together with methodological

differences) limits meaningful comparison of our results with other case

studies.

Furthermore, the study of SUHI changes relied on MODIS Aqua satellite

images, which have inherent limitations. MODIS satellite images, while

providing spatial coverage, may not capture the fine-scale variations in

UHI effects within the city. For a more precise determination of the

impact of human activities on urbanized areas in Prague,

higher-resolution data (e.g., Landsat 8 images) could have been used to

analyze the effects of the COVID-19 lockdown on SUHI (Cai et al., 2021;

Sahani et al., 2020). Due to the low temporal resolution of Landsat,

however, the number of available cloudless images was insufficient to be

used in our methodology. Likewise, although nighttime UHI effects are

generally more important in terms of health effects, we did not include

nighttime analysis in this study due to high cloud coverage of the satellite

images.

Another point of consideration is that air temperature data, while more

precise and more relevant to human thermal comfort, are often restricted

to a few stations. Thus, they do not fully capture the spatial variations in

thermal conditions within a city. Therefore, many studies have utilized

satellite images and remote sensing methods to analyze the spatial

variations of UHIs in response to the COVID-19 lockdown (Wang and He,

2023).

Finally, although we implemented rigorous criteria to ensure comparable

background conditions for the analyzed satellite images, we could not

entirely eliminate the effects of synoptic variability on LST and

urban-rural dynamics. Consequently, we could not quantify the specific
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contribution of the lockdown to UHI changes. This is especially difficult

during the spring season, which is characterized by large day-to-day

weather variability in Central Europe (Scheifinger et al., 2002).

3.5.4 Future Research and Policy Implications

Controlling for potential confounding factors such as synoptic variability

and urban-rural dynamics, our study suggests that the reduction of

anthropogenic heat release can be used as an effective strategy to mitigate

UHI effects in Prague, especially in the Inner City. Despite inconclusive

results regarding SUHI and LST changes in Europe (Glocke et al., 2023;

Parida et al., 2021), our results align with research indicating that reduced

mobility during the COVID-19 lockdown considerably improved the air

quality and AUHI conditions in the city. Additionally, employing a

rigorous selection of satellite images to eliminate the differences in

synoptic conditions, we observed a decrease in mean SUHI magnitude

across the urbanized areas of Prague.

Our findings underscore the significant influence of urban-rural dynamics

within a city on SUHI variability and the role of spatial dependence. We

encourage follow-up studies to further eliminate these effects, thereby

enabling a clearer understanding of the reduction of AHF’s impact on

SUHI. This approach aligns with Tobler’s first law of geography, which

emphasizes the importance of spatial dependence: “Everything is related

to everything else, but near things are more related than distant things.”

(Tobler, 1970).

The literature suggests reduction in anthropogenic activities as a potential

SUHI mitigation strategy (Alves et al., 2020; Feng et al., 2021; Firozjaei et

al., 2020; Raj et al., 2020; Zhou et al., 2014) and our study emphasizes

the importance of carefully considering the local context. Our findings

indicate that, especially in the city’s periphery, the effect of urban-rural

dynamics needs to be taken into account when attributing changes in

SUHI to anthropogenic activities. At the same time, mitigation strategies

to reduce AHF in Periphery might not be as effective as anticipated due to

the dominant influence of rural areas in this zone. A more sophisticated

approach for quantifying the effect of urban-rural dynamics and

investigating the relationship between spatial distribution of AHF and
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SUHI magnitude should be considered in future research. Quantifying

these effects is necessary to plan effective mitigation strategies (Qian et

al., 2023).

With the emergence of the COVID-19 pandemic, many cities have

implemented measures to promote and encourage active mobility

(walking and cycling), as well as to revitalize urban areas. This includes

increasing bike lanes, setting up low emission zones, limiting car traffic,

and revitalizing parking lots (Wang and He, 2023). Beyond providing

health benefits during the pandemic, these measures have other potential

co-benefits such as improved air quality, reduced noise pollution, and

reduced greenhouse gas emissions. Moreover, our study demonstrated

that reduction in AHF during the lockdown as a result of transportation

and industrial activities can reduce UHI and SUHI effects. Therefore, we

recommend a transit-oriented development (TOD) approach that

promotes sustainable, compact, and pedestrian-friendly urban design

around transit hubs. TOD strategies, such as more green spaces,

energy-efficient buildings, reduced car dependence, and fostering

community engagement, enhance human health (improving air quality

and thermal comfort), mitigate UHI, and promote urban resilience

(Jacobson and Forsyth, 2008; Raya et al., 2022; Wey, 2015).

Overall, the experience with the COVID-19 pandemic and the results of

subsequent studies can motivate urban climate researchers, city planners

and policy makers to collaborate and develop more resilient cities (Wang

and He, 2023).
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3.4 Conclusion

The unprecedented social and economic stagnation experienced

worldwide during the COVID-19 pandemic provided an opportunity to

investigate the effect of AHF on UHI and SUHI. In this study, we

employed a comprehensive analytical approach to assess effects of the

COVID-19 lockdown on mean UHI, SUHI, and air quality distribution in

Prague, Czechia. The Lockdown period during March–April 2020 was

compared with the Reference period of March–April 2017–2019.

Our results show that, based on MODIS observation, the COVID-19

lockdown was associated with a 15% reduction in the daytime magnitude

of SUHI in urbanized areas of Prague. These findings were consistent

with the 0.7 °C increase in afternoon AUHI magnitude (considered as the

difference between the city center station and reference station in the city

outskirts). Likewise, two main air quality indicators based on satellite

data, Aerosol Optical Depth and Offline Nitrogen Dioxide concentrations,

showed a 12% and 29% decrease, respectively. Taking into account

changes in synoptic conditions and the dynamics of LST in urban-rural

dynamics, we hypothesize that these changes may be attributed to the

decreased anthropogenic emissions, mainly through reduced

transportation and industrial activities.

The method employed in the study, which eliminates the differences in

synoptic conditions and enables comparison between different periods,

can be used to understand the effect of changes in AHF on SUHI during

lockdown in other cities.

Ultimately, our study not only provides important insights for scientists

regarding anthropogenic heat effects on the SUHI phenomenon, but also

incentives for public policymakers to understand the complex dynamics

of urban heat islands, by highlighting the interplay between urban and

rural microclimates.

Because UHI is a complex phenomenon influenced by various factors,

successful mitigation strategies that enhance thermal comfort and air
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quality can be achieved only through comprehensively understanding

UHI. Such understanding can guide researchers and policymakers in

developing targeted mitigation strategies that reduce the adverse effects

of UHI on the environment and human well-being andalso promote

sustainable urban development.

3.5. Appendix

Table A1. List of selected satellite images with dates, daily mean global

radiation, and mean afternoon temperature (13:00–14:00 CET) as observed at

Prague weather stations.
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Figure A1. SUHI magnitude distribution in Prague in the Reference and

Lockdown periods for a) the whole of Prague, and b) urbanized areas of Prague.

Vertical broken lines indicate mean values for each period weighted by the

numbers of pixels.

Figure A2. Land cover proportions in the zones within Prague.
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Figure A3. SUHI magnitude distribution (pixel count) for individual CORINE land cover

classes in Prague for the Reference (Red outline) and Lockdown (Green outline) periods.
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Chapter IV

Case Study III: Links between the

spatial distribution of the land

surface temperature and

heat-related mortality in Prague,

Czech Republic
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Abstract

This study investigates the spatial distribution of land surface

temperature (LST) and its association with heat-related mortality in seven

zones of Prague, taking into account varying cloud cover conditions. We

analyzed daily all-cause mortality in seven Prague districts between 2001

and 2020. Six major heat waves, defined as at least three consecutive days

hotter than 95th percentile of daily mean temperature distribution over

the study period, were selected to investigate the links between the spatial

distribution of LST and heat-related mortality. Three selections of

heatwave days (HWDs) were defined based on cloud coverage (less than

31%, 22%, and 14%) on the cloudiness amount. Daily MODIS land surface

temperature images were used to analyze the spatial distribution in LST

in the three selections of HWDs. Distributed lag non-linear models were

used to quantify the relative risk (RR) of heat-related mortality on HWDs

in the three selected groups. The results did not confirm spatial

association between distribution of LST and heat-related mortality risk in

Prague during major heat waves. On the contrary, the findings revealed a

constituent distribution of districts with largest and lowest RR, suggesting

that other than meteorological factors play a significant role. On the other

hand, the analysis showed that HWDs with smaller cloudiness were

associated with higher Relative Risk (RR) of mortality values despite

lower LST. These findings indicate that hot summer days with minimum

cloudiness represent a higher threat for human health than their cloudy

counterparts.
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4.1 Introduction

Episodes of extremely high temperatures, heatwaves, are associated with

an increased risk of human mortality (Gosling et al., 2009). Due to

climate change occurrence, duration and intensity of heat waves (HWs) is

very likely to increase (Lhotka, Kyselý, and Farda, 2017). Researchers

analyzed real-world data from 732 sites in 43 countries to determine the

mortality burdens related to the increased heat exposure caused by

recent anthropogenic global warming from 1991 to 2018. It was found

that 37.0% (ranging from 20.5–76.3%) of heat-related deaths during the

warm seasons in all the countries studied were attributable to

human-induced climate change (Vicedo-Cabrera et al., 2021). Extreme

temperature events disproportionately impact vulnerable populations,

exacerbating health inequalities within and across nations (Green et al.,

2019; Gronlund, Zanobetti, Wellenius, Schwartz, and O’Neill, 2016).

People living in cities are at the most significant risk of heat-related

mortality due to the urban heat island effect (Oke et al. 2017). The 2003

European heat wave led to over 20,000 deaths, with a peak temperature

of 73°C in the first two weeks of August (Fennessy and Kinter, 2011).

Moreover, research suggested that the UHI contributed around 50 % of

the total heat-related mortality during the 2003 heatwave in the West

Midlands (Heaviside, Vardoulakis, and Cai, 2016). A study on

northeastern Germany showed that, throughout the heat waves from 1990

to 2006, health risks were more pronounced for the elderly in both

countryside and city regions (Gabriel and Endlicher, 2011). However,

during the two primary heat waves in that 17-year span, the city of Berlin,

especially its most densely populated areas, recorded the highest
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mortality rates (Gabriel and Endlicher, 2011).

HWs can significantly influence the spatial and temporal fluctuations of

UHIs by modifying the transfer of sensible and latent heat, as well as by

shifting wind patterns (Li et al., 2015; Li, Sun, Liu, Wang, and Gao, 2016).

A study showed that during heatwave, the severity of the UHI increased

by about 4°C in Mashhad and Ahvaz, 6°C in Tabriz, and 3°C in Tehran,

compared to the days when there was no heatwave (Keikhosravi, 2019).

Similarly, in Cluj-Napoca intensity and extent of UHI are found to be

controlled by heatwaves (Herbel et al., 2017). Therefore, it is necessary for

a more comprehensive and interconnected examination of UHI, which

incorporates aspects such as heatwaves in urban areas and global climate

change in forthcoming research (Santamouris, 2020).

Prior studies have demonstrated that mitigating UHIs can prevent

heat-related mortality (Burkart et al., 2016). This can be achieved by

reducing temperatures in micro-urban heat islands, which may lessen the

health impact of high temperatures and potentially decrease daily

mortality rates during warm summer days (Smargiassi et al., 2009).

Furthermore, during heat wave periods in the Greater Montreal Area,

Canada, it was discovered that enhancing surface reflectivity in UHIs

could reduce heat-related mortality by nearly 3.2% (Jandaghian and

Akbari, 2018). Additionally, by modifying vegetation and surface albedo

in US cities, there is potential to counteract projected increases in

heat-related mortality by 40 to 99% by 2050 (Stone et al., 2014).

However, UHI research is constrained by the availability of data, resulting

in limited information for devising effective mitigation strategies.

Usually, temperature observation points are located outside urban cores.

This placement can lead to a discrepancy between the recorded

temperatures and the actual temperatures within city centres.

Consequently, health impact assessments based on these measurements

might underestimate the effects of heat on public health. Therefore, SUHI

analysis is employed to examine the intra-city variation of Land Surface

Temperature (LST) and estimate potential health impacts within the city.

Using Sentinel-3A and 3B imagery, researchers explored interactions

between LST, Surface SUHI, and heatwaves in Andalusia’s eight capital
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cities during July and August of 2019 and 2020 (García, 2021). The

findings reveal that LST and mean SUHI are statistically linked and

intensify during heat waves. Coastal cities experienced the greatest

daytime temperature increases with Sentinel-3A (LST = 3.90 °C,

SUHI = 1.44 °C), while inland cities saw similar effects with Sentinel-3B

(LST = 2.85 °C, SUHI = 0.52 °C) (García, 2021).

There is a need for more comprehensive and integrated studies that can

address the research gaps and challenges in UHI and heat-related

mortality research, such as the spatial and temporal variations in SUHII

and mortality, the factors that influence the vulnerability and adaptation

of different populations, and the potential impacts of climate change and

urbanization on these phenomena. Although most studies investigate the

impact of heat stress on mortality in a city as a whole, the magnitude of

the heat stress in a particular part of the city depends on its physical

characteristics.

The aim of this study is to investigate links between the spatial

distribution of LST and heat-related mortality in Prague, the Czech

Republic. Our study hypothesizes that the spatial distribution of

heat-related mortality is associated with the distribution of SUHII during

the major heat waves. The results of our study will help to identify zones

in Prague with the most significant impact of urban design on

heat-related mortality. This information is vital for identifying hot spots

of heat-related mortality and developing strategies to mitigate heat stress

in the city.

4.2 Materials and Methods

4.2.1 Data

Daily all-caused mortality data in 22 Prague districts (Figure 4.1),

covering the period 2010–2020, were provided by the Czech Statistical

Office for the purpose of the analysis. Due to the low number of cases in

some districts that did not allow for robust results, the 22 administrative

districts were aggregated to seven larger areas (Figure 4.1).
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Daily mean temperature data averaged from Prague four weather stations

operated by the Czech Hydrometeorological Institute (Praha-Ruzyně,

Praha-Karlov, Praha-Libuš, and Praha-Kbely) were used as a proxy

variable of the ambient thermal conditions. Additionally, daily land

surface temperature data from the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensor onboard Aqua satellites, covering the

period from 2001 to 2020 were used to analyze the spatial patterns in

surface urban heat island.

Figure 4.1. Administrative districts of Prague (Geoportal Prague 2020).
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Figure 4.2. The merged ten zones of Prague.

4.3 Methods

The study design followed the workflow (illustrated in Figure 4.3) divided

into three main stages: In the first stage, based on the air temperature

data, major heat wave periods occuring in Prague during the period

2010–2020 were defined as at least three consecutive days with a mean

daily temperature higher than the 95th percentile of the summer

(June-August) temperature distribution across the whole study period.

Days meeting the heatwave definition were defined as heatwave days

(HWDs).
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Figure 4.3. The workflow of the study.

In the second stage, selected HWDs were checked for meteorological

conditions other than temperature (i.e. cloud cover and precipitation) in

order to select days suitable for the analysis of LST from satellite images.

Three different selections of HWDs, based on different cloud cover

thresholds were defined. Consequently, LST was derived from MODIS

images on days that met the selection criteria.

In the third stage, Distributed Lag Non-Linear models (DLNMs) were

employed to quantify the relative risk of mortality on HWDs falling into

the three selection groups, compared to the remaining days in the

summer season in each of the 7 Prague zones, therefore in total the

method was applied twenty one times (seven ones for three selections).

More details on the individual stages are provided below.

4.3.1 Land surface temperature

To analyze spatial distribution of LST, MODIS images that are acquired

by Aqua satellite with 1 km spatial resolution were used. The image

acquisition time is around 13.30, therefore suitable for the aim of the

study. LST maps derived via the Google Earth Engine. To further

overcome the limitation of cloudiness and also understand their role,
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images/days with more than 30% cloudiness were excluded; the

remaining 23 images were divided into three groups (Selection 1, 2, and 3

as described in Figure 4.4) . For each selection, median LST was

calculated. Zonal statistics tool in ArcGIS was used to investigate the

spatio-temporal patterns.

Figure 4.4. The three selections and cloud cover percentages of the seven zones.

4.3.2 Heat-related mortality risk estimate

Generalized Additive Models (GAMs, Wood 2006) that follows a

quasi-Poisson distribution, were applied to adjust mortality time series in

each district for long-term trends and seasonal fluctuations (REF).

Consequently, distributed lag nonlinear models (DLNM, Gassparini et al.

2010) were employed to quantify relative risk (RR) of mortality on the

selected HWDs in each Prague zone. RR expresses the ratio of the

likelihood of death in the exposed population compared to the unexposed

population. DLNM is a class of models introduced by Gasaprrini et al.
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(2010) to consider the lagged effects of exposure variables on health

variables. This is achieved via a cross-basis matrix introduced into the

Poisson regression model that enables modeling non-linear effects of

exposure variables while taking into account their lag.

The Poisson family of time series regression models is commonly

employed for the analysis of count variables, such as the number of

deaths. These variables typically exhibit discrete positive values, and their

variance is equal to their mean (REF). The Quasi-Poisson family offers a

more flexible approach by allowing the variance to be proportional to the

expected value. This flexibility is particularly useful when analyzing

overdispersed data, i.e. where the variance exceeds the mean. Such

overdispersion is frequently observed in mortality data, especially within

populations with a small number of daily cases. (Quasi-)Poisson models

are fitted by a logarithmic function. This means that coefficients in the

models are expressed on a logarithmic scale, providing a logarithmic

transformation of the expected count. Therefore, exponential values of the

coefficients need to be calculated to get the real effect.

The specific model developed in this study can be outlined as follows:

{𝑙𝑜𝑔⁡ µ
𝑡( ) = α + 𝑐𝑏 + 𝐷𝑂𝑊

𝑡
 + 𝑛𝑠 𝐷𝑂𝑌

𝑡
, 𝑑𝑓 = 2( ):  𝑓𝑎𝑐𝑡𝑜𝑟   𝑦𝑒𝑎𝑟 

𝑡( )     

                                           + 𝑛𝑠( 𝑡𝑖𝑚𝑒 , 𝑑𝑓 = 1 𝑝𝑒𝑟 𝑑𝑒𝑐𝑎𝑑𝑒 )

µ
𝑡

= 𝐸 𝑌
𝑡( )

where Yt is expected count of deaths, t is the expected value on a

logarithmic scale, represents the intercept, cb is the cross-basis matrix,

DOW stands for a categorical variable of the day-of-the-week (1 to 7),

DOY represents the day-of-the-year and s stands for a smoothing spline to

model non-linear effects of DOY and time. Flexibility of a smoothing

spline is defined by the number of degrees of freedom (df). Two degrees of

freedom are used to adjust for mortality variation within the summer

season (Ellena et al. 2020). The time variable is used to adjust the model

for long term changes in overall mortality rates due to demographic and

socioeconomic factors. Analogically to previous studies (Achebak et al.

2018), a smoothing spline with one degree of freedom per decade was
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used.

In the context of this study, the impact of heat on mortality was

represented by a cross-basis (cb), which estimated the effect of HWDs

while taking into account the lagged effect of heat (Sheridan and Dixon

2017). HWD was defined as a binary variable (0 or 1) where 1 stands for

HWD. The lag-mortality effect was captured by a natural cubic spline with

two internal knots evenly distributed on the logarithmic scale. The lag

duration was prolonged to 10 days (following Sheridan and Dixon 2017).

The primary outcome of (quasi-) Poisson regression models are the

regression coefficients of the variables being modeled, where their

exponents correspond to the relative risk (RR) of mortality. In this case

study, the coefficients of the exposure variable (HWD), represent the RR

of mortality as a ratio between the likelihood of a mortality at a specific

exposure (HWD = 1) and the likelihood of a mortality at a reference

exposure (HWD = 0), considering the delayed effects. Figure X shows an

example of the HWD effect in Prague 1 for Selection 1. While Figure X

(left) suggests that there is a significantly increased risk of mortality up to

lag 4 after the HWD onset (with maximum RR = 1.1 on lag 0), Figure X

(right) shows the overall effect of HWDs up to lag 10 (RR=1.5).

Figure 4.5. Left: lag-response effect of heatwave days (HWD) on the relative risk (RR)

of mortality on days (lag) 0 to 10 after the HWD onset in Prague 1 in Selection 1. Right:

Overall RR of mortality on HWDs, considering the lagged effect.

Overall Relative Risks of mortality on HWDs, considering a lagged effect

up to 10 days, were calculated for the three selections and each Prague
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zone separately. All modeling and computations were carried out using

mgcv (version 1.8-42) and dlnm packages (version 2.4.7) in the software

R (version 4.1.2).

4.4. Results and Discussions

In this study, we analyzed the spatial distribution of LST and

heatwave-related mortality across seven zones in Prague to understand

their relationship. We divided our data into three selections based on

cloud coverage to also examine the impact of cloud cover on this

association. The 19 time series that depict mortality rates from 2001 to

2020 across seven districts in Prague have been modeled using DLNMs

with a quasi-Poisson family distribution, as outlined in the methods. For

each district, the RR was calculated for the chosen HWDs in relation to

summer temperatures and lags ranging from 1 to 10 days.

In Selection 1 , comprising 23 images with cloud cover less than 31%, the

RR values for districts 1, 4, 5, 6, 8, 9, and 10 were 1.9, 2.3, 1.7, 1.5, 1.6, 1.1,

and 2 respectively. Correspondingly, the mean LST values ranged from

35.6 to 38.4, providing a baseline understanding of the

temperature-mortality association under moderate cloud cover.

Figure 4.6. Relative Risk values of the seven districts and LST comparison based

on Selection 1.

In the second selection, which included 16 images with cloud cover less

than 22%, we observed an escalation in RR values across the same

districts. Notably, districts 1, 4, and 10 exhibited higher RR values of 2.7,
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3.7, and 3.3, indicating an augmented risk of heat-related mortality in

clearer sky conditions. The associated LST values ranged from 35.8 to

38.2, reinforcing the impact of reduced cloud cover on elevated

temperatures and subsequent health risks.

Figure 4.7. Relative Risk values of the seven districts and LST comparison

based on Selection 2.

In the Selection 3, consisting of 9 images with cloud cover less than 14%,

the RR values surged dramatically across all districts. District 1, for

instance, demonstrated a striking RR value of 9.2, emphasizing an

unprecedented susceptibility to heat-related mortality in extremely clear

atmospheric conditions. The corresponding LST values ranged from 35.1

to 37.0, highlighting the substantial influence of diminished cloud cover

on temperature extremes and the resultant health implications.

Figure 4.8. Relative Risk values of the seven districts and LST comparison based

on Selection 3.

Districts 1, 4 and 10 consistently exhibit higher RR values across all three

selections. District 1, in particular, displays a notable escalation from 1.9
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to 2.7 and further to 9.2 as cloud cover decreases. This indicates a

persistent and heightened vulnerability to heat related mortality in these

districts, influenced by urban heat island effects. The substantial changes

in RR values with varying cloud cover indicate a strong association

between reduced cloud cover on hot summer days and increased health

risks. These districts may be particularly sensitive to atmospheric

conditions, requiring targeted interventions during periods of clearer

skies.

Figure 4.9. The relationship between LST and RR in different zones and

selections.

On the other hand, districts 6, 8 and 9 show moderate to lower RR values

in Selection 1, with fluctuations in subsequent selections. District 6, for

example, has RR values of 1.5, 1.7, and 2.1 across Selections 1, 2, and 3,

respectively. These districts show more moderate changes in RR values

with decreasing cloud cover. While still influenced by atmospheric

conditions, other factors may contribute to their overall vulnerability and

comprehensive risk assessments are needed for a better understanding of

local factors contributing to health risks.

District 5 displays an interesting pattern, with RR values increasing from

1.7 to 2.2 and further to 4.0 across the selections. This district's
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vulnerability to heat-related mortality RR appears to amplify with

decreasing cloud cover, emphasizing the importance of considering

atmospheric conditions in risk assessments.

Overall, there is spatial variability in LST across the seven districts, even

within the same cloud cover selection. Districts 1 and 10 consistently

experience higher temperatures, suggesting potential urban heat island

effects or local climate patterns influencing temperature distributions.

Moreover, local climate patterns, including wind circulation and

topography, may contribute to the observed spatial differences in

temperature and heat-related mortality. Although the LST maps are a

convenient tool for identifying hot spots, they only partially explain the

spatial distribution of heat-related mortality. Therefore other factors need

to be considered when implementing measures to reduce heat-related

mortality risk. For example, variability in socio-economic conditions

across districts that influences vulnerability and adaptive capacities to

extreme temperatures may also play a role.

The observed relationship between LST and heat-related mortality risk

appears to be influenced by cloud cover which indicates higher. Lower

cloud cover intensifies the association, emphasizing the mediating role of

atmospheric conditions in modifying health risks. The images with less

cloud coverage explain better the spatial distribution of heat-related

mortality. Therefore similar studies should be taken into account while

selecting images. This highlights the need to consider meteorological

factors in epidemiological studies to enhance the precision of risk

assessments.

The results indicate that the risk of heat-related mortality and the mean

LST vary across the different zones and selections. As cloud cover

decreases from Selections 1 to Selections to Selections 3, the RR values

generally increase across all districts. Higher RR values in lower cloud

cover selections may suggest a stronger association between LST and

heat-related mortality due to increased heat exposure. There is a notable

trend of increasing RR values as cloud cover decreases in all seven zones.

This suggests a stronger association between LST and heat-related

mortality when skies are clearer. Higher RR values in lower cloud cover
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selections may suggest a higher heat-related mortality risk due to

increased heat exposure.

LST, on the other hand, varies across districts and selections but does not

show a consistent pattern with cloud cover percentages. This suggests that

higher temperatures, associated with lower cloud cover, increase the risk

of heat-related mortality, while between LST and mortality is rather

indirect. Additionally, spatial distribution of heat wave-related mortality

within the city may vary with factors such as demographic characteristics,

socioeconomic factors, and health infrastructure. Further research is

needed to fully understand these spatial relationships on the microscale

level and to develop effective public health strategies to mitigate the

impact of heatwaves.

4.5 Conclusions

The main findings of this study did not confirm spatial association of

heat-related mortality in Prague with LST during the major heat waves.

On the other hand, comparison of the three groups of HWDs selected

based on the cloud cover amount revealed that HWDs with smaller

cloudiness were associated with higher Relative Risk (RR) of mortality

despite lower LST. These findings indicate that hot summer days with

minimum cloudiness represent a higher threat for human health than

their cloudy counterparts.

Particularly, districts 1, 4, and 10 consistently show higher RR values,

suggesting a greater susceptibility to heat exposure. These districts,

therefore, may require targeted public health interventions and adaptive

measures due to their heightened sensitivity to temperature extremes.

The variability in RR and LST across districts could be attributed to

differences in SUHI effects, socio-economic factors, and local climate

patterns. This underlines the importance of tailored urban planning
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strategies. For instance, measures such as increasing green spaces or

optimizing building design could be particularly effective in these

high-risk districts.

The study also highlights the mediating effect of cloud cover, emphasizing

the need to consider atmospheric conditions when assessing health risks

associated with extreme temperatures. Further research should consider

this effect to not to underestimate the RR and image with low cloud cover

needs to be used to analyze heat related mortality.

Moreover, urban planning strategies aimed at mitigating heat island

effects in vulnerable districts could be instrumental in reducing

heat-related health risks. The findings of this study could help identify

areas in Prague with the highest impact on human health, where

mitigation measures should be targeted.

The study acknowledges the complex nature of LST and heat-related

mortality, and the uncertainties in terms of issues and approaches on

implementation. It calls for an integrated approach combining urban

planning, public health policies, and climate change strategies to reduce

heat intensity, mortality risks, and enhance urban resilience, especially

for vulnerable groups. Future research opportunities lie in utilizing

comprehensive data, incorporating relevant variables, comparing

different measures and models, and developing effective interventions for

urban heat issues.
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Chapter V

5. Conclusions

This thesis examined the SUHI phenomenon through three case studies,

each focusing on different aspects. It investigated how land cover

changes, reduction in anthropogenic heat during COVID-19 lockdown,

and human health are connected to SUHI formation. Each case study

reveals different limitations of studying SUHI, demonstrating the

importance of multi facade perspectives to deeply understand the topic.

Case Study I examined the impact of land cover changes on the

development of SUHI in Prague, and revealed that the main increase was

due to the conversion of agricultural areas into urban areas. Notably,

these changes were more significant in areas 9 km to 12 km away from the

city center, suggesting that peri-urbanization has intensified SUHI in

Prague. The study emphasized the need for urban planning to consider

these land cover changes and promote green infrastructure and

sustainable strategies.

Case Study II explored the effect of anthropogenic heat on SUHI

utilizing the unique real-life experimental situation COVID-19 lockdown

provided. A comparison of the lockdown period with a reference period

revealed a 15% reduction in SUHI in Prague’s urbanized areas, potentially

due to decreased anthropogenic emissions. This highlights the often

overlooked role of anthropogenic heat on mitigation of UHI and SUHI.

Although these changes were during the cooler months of March and

April, provide valuable insights into the potential benefits of reduced

anthropogenic heat's potential of mitigating UHI effects
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Case study III anaylzed the links between LST and heat-related

mortality in Prague. Finally, although the study did not confirm spatial

association of heat-related mortality in Prague with LST during the major

heat waves, comparison of the three groups of HWDs selected based on

the cloud cover amount revealed that HWDs with smaller cloudiness were

associated with higher Relative Risk (RR) of mortality despite lower LST.

These findings indicate that hot summer days with minimum cloudiness

represent a higher threat for human health than their cloudy

counterparts. Additionally, the results highlighted the increased

vulnerability to extreme temperatures in Prague districts 1, 4, and 10, and

the need for targeted public health interventions. The study emphasized

the importance of tailored urban planning strategies to mitigate heat

island effects in vulnerable districts, considering the variability in RR and

LST across districts can not be explained only by SUHI effects and other

factors that need to be investigated such as by socio-economic factors, and

local climate patterns. This study provides valuable insights into the

relationship between heatwaves and the intensification of the urban heat

island effect, which has significant implications for urban planning and

public health in the context of climate change.

In summary, these case studies collectively highlight the complex

relationship between urbanization, land cover changes, anthropogenic

heat flux, and heat-related mortality in shaping the UHI and SUHI effects

in Prague. They highlight the importance of integrated and sustainable

urban planning strategies that consider these complex interactions to

enhance urban resilience, reduce heat intensity and mortality risks, and

improve thermal comfort and air quality. Future research should aim to

utilize high-resolution regional climate models to investigate the UHI and

SUHI dynamics under climate conditions to direct targeted mitigation

strategies.

The findings of this thesis not only contribute to the academic discourse

surrounding urban climatology but also hold practical implications for

policymakers, urban planners, and public health officials. As we navigate

the complexities of contemporary urban environments, the insights

garnered from this research provide a valuable foundation for informed

decision-making and sustainable urban development.
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5.1. Further Research

Given the findings of this thesis, there are several promising directions for

future research:

● Deepening the Understanding of Land Cover Changes: The first

case study highlighted the impact of land cover changes, particularly the

conversion of agricultural areas into urban areas, on SUHI. Future

research could delve deeper into this area, investigating the specific types

of urban development (e.g., residential, commercial, industrial) that

contribute most to SUHI. Additionally, studies could explore the impact

of different types of green infrastructure on mitigating SUHI.

● Anthropogenic Heat and SUHI: The second case study

underscored the role of anthropogenic heat in SUHI. Future research

could extend this investigation to other cities and different seasons,

providing a more comprehensive understanding of how anthropogenic

heat influences SUHI. Moreover, studies could explore the potential of

various strategies for reducing anthropogenic heat, such as

energy-efficient buildings and transportation systems.

● Heat-Related Mortality and SUHI: The third case study revealed

the complex relationship between heat-related mortality, cloud cover, and

SUHI. Future research could further investigate this relationship,

considering other potential factors such as air pollution, humidity, and

wind speed. Additionally, studies could examine the effectiveness of

public health interventions in reducing heat-related mortality.

● High-Resolution Regional Climate Models: The thesis suggests the

use of high-resolution regional climate models to investigate UHI and

SUHI dynamics under future climate conditions. This could be a fruitful

area for future research, helping to predict future trends and inform

mitigation strategies.

● Socio-Economic Factors and SUHI: The thesis also highlighted the

need to consider socio-economic factors in understanding and addressing

SUHI. Future research could explore this in more detail, examining how

factors such as income, education, and access to healthcare influence

vulnerability to SUHI.
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● Policy and Planning Implications: Finally, future research could

focus on the policy and planning implications of these findings, exploring

how they can be translated into effective strategies for sustainable urban

development. This could involve collaboration with policymakers, urban

planners, and public health officials, ensuring that research findings are

effectively applied in practice.

In summary, while this thesis has made significant contributions to our

understanding of SUHI, there is still much to learn. Future research in

these areas could provide valuable insights, helping to enhance urban

resilience, reduce heat intensity and mortality risks, and improve thermal

comfort and air quality.
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