
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

REMOTE APIWEBREFERENCE FOR JAVA ENTERPRISEAPPLICATIONS
TESTOVÁNÍ VZDÁLENÝCH APLIKAČNÍCH ROZHRANÍ JAVA ENTERPRISE APLIKACÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. ONDŘEJ KRPEC
AUTOR PRÁCE
SUPERVISOR Ing. RADEK KOČÍ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
The Master’s thesis focuses on testing REST API interfaces of web applications. The result
of the thesis is the Restty application, which allows to test API endpoints of said interfaces,
as well as to create extensive test cases from the interface’s endpoints. The theoretical
part of the thesis explains the principles of web services, remote interfaces, technologies
that are used for development of the application, and the Swagger framework upon which
the application is built. Subsequently, the design drafts of the application are presented
in detail. The following section covers Restty’s implementation and demonstrates how
the Restty can be used for testing the interface of a Red Hat JBoss BPM Suite application.
In conclusion, the benefits of the Restty application are evaluated and its possible extensions
are proposed.

Abstrakt
Tato diplomová práce popisuje testování REST API rozhraní aplikací. Výsledkem práce je
aplikace Restty, založená na použití nástroje Swagger, která umožňuje testovat jednotlivé
části API aplikací, i vytvářet a spouštět komplexní testovací scénáře nad daným rozhraním.
Teoretická část práce vysvětluje principy webových služeb, vzdálených rozhraní a před-
stavuje nástroj Swagger i technologie použité k implementaci. V následující kapitole jsou
v práci prezentovány designové návrhy aplikace, na které plynule navazuje kapitola o im-
plementaci a testování, pro které je zvoleno rozhraní nástroje Red Hat JBoss BPM Suite.
V závěru práce jsou vyhodnoceny přínosy aplikace Restty a navrženy případné budoucí
rozšíření.

Keywords
REST, Continuous testing, Automated testing, Swagger, Angular, Java, TypeScript, Post-
greSQL, Spring Framework, Hibernate, PatternFly, Red Hat, Web Services, Test cases,
Test automation

Klíčová slova
Webové služby, REST, Automatické testování, Průběžné testování, Swagger, Angular, Java,
TypeScript, PostgreSQL, Spring Framework, Hibernate, Patternfly, Red Hat, Testovací
scénáře

Reference
KRPEC, Ondřej. Remote API Web Reference for Java Enterprise Applications. Brno,
2018. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Radek Kočí, Ph.D.

Rozšířený abstrakt
Tato diplomová práce popisuje testování REST API rozhraní aplikací. Výsledkem práce je
aplikace Restty, která je založená na použití nástroje Swagger, jenž umožňuje získat doku-
mentaci REST API rozhraní aplikací z jejich zdrojového kódu a zpřístupnit toto rozhraní
v podobě JSON souboru. Cílem Restty je umožnit jejím uživatelům testovat jednotlivé
části API aplikací a navíc i vytvářet a spouštět komplexní testovací scénáře nad daným
rozhraním.

Teoretická část práce nejrpve vysvětluje principy webových služeb, vzdálených rozhraní,
REST principy a především způsoby komunikace a přístupu ke zdrojům v rámci jed-
notlivých webových služeb pomocí metod, poskytovaných HTTP protokolem. Následně
jsou v práci představeny některé, již existující aplikace, které jsou v současnosti používany
pro testování REST rozhraní aplikací, jejich nedostatky a nevýhody.

V následující kapitole jsou představeny technologie použité pro implementaci aplikace.
Uvedené technologie jsou rozdělené do tří částí. V první části jsou rozebrány technolo-
gie pro implementaci serverové části aplikace, konkrétně jazyk Java a standardní pod-
porované knihovny pro tvorbu webových aplikací v tomto jazyce – konkrétně knihovna
Spring, umožňující tvorbu samotné webové aplikace, a Hibernate, knihovna poskytující
“objektově-relační” mapování. Ve druhé části jsou vysvětleny principy technologií, které
jsou použity pro vývoj klientské části aplikace. Konkrétně se jedná o knihovnu Angular,
která umožňuje vytvářet klientskou část webových aplikací pomocí jazyků HTML, CSS
a TypeScript. V následujících odstavcích jsou vysvětleny principy již zmíněného jazyka
TypeScript, jenž vznikl jako rozšíření jazyka JavaScript, a jeho role v použité knihovně
Angular. V poslední řadě, se kapitola věnuje představení knihovny PatternFly, a jejím
principům, která byla použita ke stylování aplikace. Třetí část kapitoly se věnuje výhradně
popisu nástroje Swagger a jeho použití v aplikaci.

Následující kapitola obsahuje kompletní návrh aplikace Restty a popisuje s jakými cíly
byla aplikace navržena. V prvních odstavcích jsou nejprve detailně probrány požadavky,
které byly na výslednou aplikaci kladeny. Na jejich základech byl následně vytvořen databá-
zový model celé aplikace, který je v kapitole detailně rozebrán a ilustrován ve formě ER
diagramu. Na databázový model poté postupně navazují odstavce, jenž popisují desig-
nové návrhy aplikace, které byly použity jako předloha pro samotný vývoj klientské části
aplikace.

Na návrhy aplikace plynule navazuje kapitola o implementaci a testování, ve které je
nejprve probráno rozdělení aplikace na klientskou a serverovou část, konkrétně použití
návrhového vzoru “Separation of Concerns”, a následně struktura obou částí. Dále jsou
v kapitola detailněji rozebrány důležité části implementace, konkrétně je v textu vysvětleno
vytváření nových projektů v Restty a zpracování vstupního JSON souboru s API dokumen-
tací, a také samotná implementace testování API a volání jejich HTTP dotazů. V poslední
řadě je v diplomové práci probráno testování aplikace Restty, k čemuž bylo využito rozhraní
aplikace Red Hat JBoss BPM Suite.

V závěru je celá práce shrnuta, jsou vyhodnoceny přínosy celé aplikace oproti stávajícím
řešením a je navrženo několik dodatečných rozšíření, které umožní aplikaci ještě více šetřit
čas vývojářům, kteří by jinak museli tento čas trávit manuálním psaním testů.

Remote API Web Reference for Java Enterprise
Applications

Declaration
Hereby I declare that this master thesis was prepared as an original author’s work under
the supervision of Ing. Radek Kočí, Ph.D. The supplementary information was provided
by Mgr. Ivo Bek. All the relevant information sources, which were used during preparation
of the thesis are properly cired and included in the list of references.

. .
Ondřej Krpec
May 22, 2018

Acknowledgements
I would like to thank Mgr. Ivo Bek for his technical guidance of the master thesis.
At the same time, I would like to thank Ing. Radek Kočí, Ph.D., for his pedagogical
leadership.

Contents

1 Introduction 3

2 Preliminaries and Definitions 4
2.1 Understanding the Web Services . 4

2.1.1 Introduction to RESTful Web Services 4
2.1.2 Messaging . 5
2.1.3 Addressing the Resources . 6
2.1.4 HTTP Verbs . 7
2.1.5 Representation of the Resources . 8

2.2 Introduction to Application Programming Interfaces 8
2.2.1 When is API RESTful? . 9

2.3 The Importance of API Testing . 10
2.3.1 Beginning with cURL . 10
2.3.2 Continuous Testing with Postman 11

3 Technologies and Frameworks 12
3.1 Introduction to Java . 12

3.1.1 Basics of Java’s syntax . 13
3.2 Building a RESTful Web Service . 14

3.2.1 The Advantages of Using Spring Framework 14
3.3 Persisting Data With Hibernate . 15
3.4 What is Angular? . 17

3.4.1 Beginning as AngularJS . 17
3.4.2 Angular’s Core Concepts . 18

3.5 Introducing TypeScript . 20
3.5.1 Why Add Types to JavaScript . 20
3.5.2 Future JavaScript . 21

3.6 Styling with PatternFly . 21
3.6.1 Using the Components . 22
3.6.2 Working with the Grid . 22

3.7 Introduction to Swagger Framework . 23
3.7.1 Using the Swagger . 24

4 Application Design 26
4.1 The Restty’s Model . 26
4.2 Requirements for the Restty Application . 26
4.3 Design drafts . 27

4.3.1 Designing the Project Explorer . 28

1

4.3.2 The Project Dashboard . 28
4.3.3 Exploring the Endpoints . 29
4.3.4 The Test Cases . 29

5 Implementation and Testing 32
5.1 Separation of Concerns . 32
5.2 Structure of the Frontend . 32
5.3 Parsing the Swagger’s JSON . 34
5.4 Implementation of the API Testing . 35
5.5 Testing with Red Hat JBoss BPM Suite . 37

5.5.1 Red Hat JBoss BPM Suite’s Basic Concepts 37
5.5.2 Testing the Restty . 38

5.6 Future extensions . 39

6 Conclusion 40

Bibliography 41

A Installation details 43

2

Chapter 1

Introduction

In the software industry, the accessible and testable code is crucial for modern businesses,
and the best way for developers to access or test it is through APIs1. APIs are supposed
to connect engineers, let companies add value to their products and create an ecosystem
of shared knowledge that allows other developers to use the functions provided by the inter-
faces. To fulfill these tasks, the interfaces have to be clear, accessible and, most importantly,
human and machine readable. However, despite their importance, there hasn’t been an in-
dustry standard for documentating nor testing them.

The thesis aims to solve the problem of testing the applications interfaces. The goal
is to develop an application having an innovative user interface with regard to clarity
and simple use, aimed at developers, even in the case of large interfaces. The application
will be based on the Swagger framework, which provides a way to automate API reference
generation. The resulting application, called Restty, will provide not only way to test single
API endpoints, but mainly the functionality to create extensive test cases from the listed
web services.

The thesis is organized as follows. Chapter 2 gives definitions needed to follow the thesis
and explains web services and RESTful APIs in detail. Chapter 3 focuses on technologies
that were used for the development of the Restty application. Chapter 4 describes the ap-
plication’s designs and mockups, which were used to reveal any clashing visual elements
before writing the code. The penultimate Chapter covers the development of Restty us-
ing the technologies listed in previous sections and testing the application using the API
from the Red Hat JBoss BPM Suite application. The last Chapter contains an overall
summary of the developed solution and final thoughts on the work done within the thesis.

1API is an abbreviation for an Application Programming Interface which is a set of protocols and tools
for building application software.

3

Chapter 2

Preliminaries and Definitions

This chapter will gradually introduce terms necessary to follow the thesis. In the first
section basic terminology is introduced and established notion of remote interfaces and web
services. In the next section an explanation of what APIs are is provided and the last
section covers the importance of their testing.

2.1 Understanding the Web Services
A web service is a software system designed to support interoperable machine to machine
interactions over a network. It is a collection of open protocols and standards used for ex-
changing data between applications or systems. Software applications written in various
programming languages and running on various platforms can use web services to exchange
data over the networks like the Internet in a manner similar to interprocess communication
on a single computer.

In the past, web services used mostly SOAP1 over HTTP protocol [4], allowing less
costly interactions over the Internet. However, in 2004 the W3C extended the definition
of web services about “REST-compliant” web services [14], in which the primary purpose
of the web service is to manipulate XML or JSON representations of web resources using
a uniform set of stateless operations.

2.1.1 Introduction to RESTful Web Services

The REST, abbreviation of Representationl State Transfer, is an architectural style for net-
worked hypermedia applications, primarily used to build web services. The term was first
defined in the year 2000 by R. Fielding in his doctoral dissertation [3]. In the dissertation,
Fielding explained that the REST principles were known as the “HTTP object model”
beginning in 1994, and were used in designing the HTTP 1.1 and Uniform Resource Iden-
tifiers [1] standards.

The REST architectural style constrains an architecture to a “client-server” architec-
ture and is designed to use a stateless communication protocol, typically HTTP. A client
and a server exchange representations of resources by using standardized interface and a pro-
tocol. When the client accesses the resource using unique URI, a representation of the re-
source is returned. With each new resource representation, the client is said to transfer

1Simple Object Access Protocol is a protocol specification for exchanging structured information
in the implementation of web services in the computer networks.

4

state. The resources are typically represented by text, JSON or XML, with JSON being
currently the most popular format being used.

2.1.2 Messaging

As mentioned in the previous section, the RESTful web services can use any stateless com-
munication protocol as a medium of communication between client and a server. However,
the HTTP protocol is the most popular. The communication works as follows: the client
sends a message in form of HTTP Request and the server responds in the form of HTTP
Response. This technique is termed as Messaging. Apart from the data, the messages also
contain some metadata about the message itself. As can be seen in the figure 2.1, a request
message consists of five major parts.

Verb URI HTTP Version

Request Header

Request Body

Figure 2.1: The format of a HTTP Request.

1. Verb indicates the HTTP method like GET, PUT, POST, etc.

2. URI is the Uniform Resource Identifier used to identify the resource on the server.

3. HTTP version is the version of HTTP.

4. Request header contains metadata as a collection of “key-value” pairs of headers
and their values. For instance, a client (or browser) type, format supported by the client,
format of the message body, cache settings for the response, and more.

5. Request body is the message content or resource representation.

In the listing 2.1 can be seen an example of a request that was created by the browser
when it tried to access the website of Faculty of Information Technology.

1 GET / HTTP/1.1
2 Host: www.fit.vutbr.cz
3 User−Agent: Mozzila/5.0 (Windows NT 6.3; Win64; x64) ...
4 Accept: text/html,application/xhtml+xml,application/xml; ...
5 Accept−Encoding: gzip, deflate
6 Accept−Language: cs−CZ,cs;

Listing 2.1: An example of a simplified GET request made by the browser.

As can be seen, the HTTP method is followed by the URI and the HTTP version.
The request also contains some headers. For instance the “User-Agent” header contains
information about the type of a client which made the request. The Accept headers tells
the server about various representation formats, the encoding, and a language the client
supports. The server, if it supports more than one representation format, can decide the for-
mat for the response at runtime depending on the value of the Accept header.

5

When the server receives the request it responds with a HTTP response which consists
of four major parts, as can be seen in the figure 2.2.

Response Code HTTP Version

Response Header

Response Body

Figure 2.2: The format of HTTP response.

1. Response code contains the server status for the requested resource. The response is
a “3-digit” status code, for instance, 404 means resource not found and 200 means
response is ok.

2. HTTP version is the version of HTTP.

3. Response header contains metadata and settings of the response message as “key-
value” pairs. For example, content type, content language, response date, etc.

4. Response body contains message content or resource representation if the request was
successful.

In the listing 2.2 can be seen an example of a response to a request from the listing 2.1.
The response contains the version of HTTP, response code and several response headers
followed by the response body which in this case is a HTML page.

1 HTTP/1.1 200 OK
2 Date: Sat, 09 Dec 2017 08:36:01 GMT
3 Server: Apache
4 Content−Location: index.php.cz
5 Pragma: no−cache
6 Keep−Alive: timeout=60, max=100
7 Connection: Keep−Alive
8 Transfer−Encoding: chunked
9 Content−Type: text/html; charset=iso−8859−2

10 Content−Language: cs
11 <!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.01//EN">
12 <html>
13 <head>
14 ...

Listing 2.2: An example of a simplified response to GET request.

2.1.3 Addressing the Resources

If the client wants to get a resource from the server, it needs to know, how to address
it. Addressing refers to locating a resource or multiple resources lying on the server. It
is analogous to locating a postal address of a person. A RESTful service uses directory
hierarchy like human readable URIs to address its resources. Each resource is identified
by its URI which is of the following format:

6

< 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 >: // < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒 > / < 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑦𝑝𝑒 > / < 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑑 > (2.1)

However, it needs to be noted that the URI should not say anything about the operation
or action, because for identifying the operation to be performed on the resource, the HTTP
verbs are used. This enables the client to call the same URI with different verbs to perform
different operations. The verbs correspond to read, create, update, and delete2 operations.
Nevertheless, while designing URIs there are other practices that should be considered
as well.

1. Plural nouns should be used to define resources.

2. Spaces should be avoided. Typically in URIs it’s recommended to use underscore
or hyphen when using long resource name.

3. Lowercase letters are recommended. Although URIs are “case-insensitive”, it’s a good
practice to keep them in lower case letters only.

4. Avoid verbs for the resource name until the resource is actually an operation or a pro-
cess.

2.1.4 HTTP Verbs

As stated in section 2.1.3 the most used HTTP verbs correspond to CRUD operations.
For instance, read operation corresponds to the GET verb which is used to retrieve a repre-
sentation of a resource. If the request is successful, it returns representation of the resource
in a format that is accepted by the client and a response code of 200. Note that the re-
quests that utilize the verb should be used only to read data, not change it. When used
this way they are considered safe. That is, they can be called without risk of data modifi-
cation or corruption. Additionally, the requests are idempotent, which means that making
multiple identical requests ends up having the same result as a single request.

For creating resources, the POST is most often utilized. On successful creation, re-
turning a Location header, with a link to the created resource, and the 201 response
code. The method is neither safe nor idempotent. Therefore it is recommended for “non-
idempotent” resource requests. Making two identical POST requests will most likely result
in two resources containing same information.

For update capabilities, the PUT verb is ofter most utilized, “PUT-ing” to a known
resource with the request body containing the newly updated representation of the original
resource. On successful update, the server should return the 200 or 204 status code if not
returning any content in the body. It follows from the above that a body in the response is
optional – providing one is not necessary and only leads to more bandwidth consumption.
The PUT is not a safe operation, in that it modifies state on the server, but is idempotent.
In other words, if the resource is updated using the PUT method and then the same call is
made again, the resource is still there and has the same state as it did with the first call.

The DELETE verb is pretty straightforward, it is used to delete a resource. On suc-
cessful deletion, the server should return response code of 204 with no response body.
“HTTP-spec-wise”, the operations are idempotent. If the resource is deleted, it is gone.

2In computer programming, create, read, update, and delete (as an acronym CRUD) are four basic
functions of persistent storage.

7

Repeatedly calling the method on that resource ends up the same – the resource is gone.
However, there is a caveat about the method’s idempotence. Calling it on the resource
a second time will result in 404 response code since the resource was already removed
and therefore is no longer findable. It makes the operation in fact no longer idempotent,
however, the “end-state” of the resource is the same.

2.1.5 Representation of the Resources

It is clear that the focus of RESTful services is on resources and on providing access to them.
A resource can easily be thought of as an object as in OOP3. The resources can be text
files, HTML pages, images or videos and can consist of other resources. The server simply
provides access to the resources and client accesses and modifies them. It is important
to point out that the architecture does not put a restriction on the format of a resource
representation. However, as mentioned before, the most popular representation formats are
XML and JSON.

1 <user>
2 <id>1</id>
3 <firstName>John</firstName>
4 <lastName>Doe</lastName>
5 <age>42</age>
6 </user>

Listing 2.3: An example of a XML representation of a user resource.

Once a resource is identified then its representation is to be decided using a standard
format so that the server can send the resource in the above said format and the client can
understand said format.

1 {
2 "id": 1,
3 "firstName": "John",
4 "lastName": "Doe",
5 "age": 42
6 }

Listing 2.4: An example of a JSON representation of a user resource.

Despite the fact that there are no restrictions on the format of a resource representa-
tion, following some important points should be considered. For instance, both the server
and the client should be able to understand said format. Moreover the format should be
able to represent the resource completely.

2.2 Introduction to Application Programming Interfaces
In computer programming an application programming interface is the defined interface
through which interactions happen between an enterprise and users of its assets. It can
become the primary entry point for enterprise service, for its own website and applications,
as well as for a partner and customer integrations. It is defined through a contract so that
any application can use it with relative ease.

3Object oriented programming (OOP) is a programming paradigm based on the concept of objects, which
may contain data, in the form of fields; and code, in the form of procedures, often known as methods.

8

The API [8] approach creates a loosely coupled architecture that allows a component
service to have a wide range of future uses, and is technology agnostic. The architecture
resolves around providing programmable interfaces to a set of services to different applica-
tions serving different kinds of customers. It assumes that these user groups might change
or evolve over time in the way they utilize the provided services. The strategy of providing
APIs leads to the following benefits:

1. With APIs, computers rather than people can manage the work. Through them,
companies can update work flows to make them quicker and more productive.

2. They allow content to be embedded from any site or application more easily. This
guerantees more fluid information delivery and an integrated user experience.

3. Using APIs, any user or company can customize the content and services that they
use the most.

4. They represent a cheaper way of building applications by increasing the reuse of ser-
vices. Providing a usage or “analytics-based” evolutionary development platform
decreases cost of development and change to services.

5. The company that releases the API allows its customers to access their conferencing
services in new, more efficient ways, increasing brand recognition and customer loyalty.

2.2.1 When is API RESTful?

The previous sections explained the principles of RESTful web services and introduced
the term Application Programming Interface. However, it is necessary to point out that
not all web APIs are considered RESTful. An API is RESTful only when it is acting under
the REST constraints at all times. These constraints restrict the ways that the server
may process and respond to client requests so that, by operating within these constraints,
the service gains desirable “non-functional” properties, such as performance, scalability,
portability and reliability. These formal constraints are as follows:

1. “Client-Server” – the constraint is based on the separation of concerns princi-
ple. Separating the user interface concerns from the data storage concerns improves
the portability of the user interface across multiple platforms.

2. Stateless – communication between client and server have to be stateless. It means
that each request from client to server must contain all the necessary information
to complete the transaction. The main advantage of this approach is that the system
is able to scale better because the server does not have to store client state between
requests.

3. Cacheable – the constraint ensures that the clients can cache response to improve
performance. “Well-managed” caching partially or completely eliminates some “client-
server” interactions, further improving scalability and performance.

4. Uniform Interface – in order to have efficient caching in a network, components
have to be able to communicate via a uniform interface. The definition of uniform
interface consists of four other constraints, however most of them can be found im-
plemented in the HTTP protocol.

9

5. Layered System – in a layered system, intermediaries, such as proxies can be placed
between client and server utilising the web’s uniform interface. The main advantage
is that intermediaries can then intercept “client-server” traffic for a specific purposes;
for example caching.

6. Code On Demand – it is an optional constraint and it allows clients to down-
load programs for “client-side” execution. The best examples for this are compiled
components such as Java applets or “client-side” scripts such as JavaScript.

2.3 The Importance of API Testing
Software testing is an important phase of the software development life cycle in general,
with API testing being one of its most challenging parts [10]. It is being increasingly
recognised as being more suitable for test automation and continuous testing than other
forms of testing. Many developer teams are starting to increase the level of API testing
while decreasing their reliance on GUI testing because the tests at the API layer are less
brittle and easier to maintain even thought they have to cover individual functionalities
as well as series or chain of functionalities.

In general API testing is used to determine whether the APIs and the integrations they
enable work in the most optimal manner e.g. whether they return the correct response, react
properly to edge cases, delivery responses in an acceptable amount of time, and respond
securely to potential security attacks. In particular, the testing concentrates on using
software to make API calls in order to receive an output before observing and logging
the system’s response. This enables to test if the API returns a correct response or output
under varying conditions. The output is typically a pass or fail status, date, information
or a call to another API. However, it is important to point out that there could be no
output at all or something completely unpredicted can occur.

Overall, it’s very clear that the risk of putting a bad and especially insecure product
on the market is greater than the cost of testing it which is why the API testing is crucial
part of the application development process.

2.3.1 Beginning with cURL

As APIs are becoming an integral part of how software works it is unsurprising that many
frameworks and applications for theirs testing were developed. Probably the oldest of them
is cURL [13]. It is a command line tool for transferring data using various protocols.
It consists of two products – libcurl and curl. Libcurl is a “client-side” transfer library
with support for a wide range of protocols. It is portable, “thread-safe”, feature rich,
and well supported on virtually any platform. On the other hand, curl is a command line
tool for getting or sending files using URL syntax. Since curl uses libcurl, it supports
the same range of common Internet protocols that libcurl does. In general, it provides
a generic, language agnostic way to demonstrate HTTP requests and responses.

In addition, as REST follows the same model as the web, it is possible to type an HTTP
address to the curl and use it to make an HTTP request to a resource on a server. The server
returns a response, which would typically be converted by the browser to a more visual
display, as a raw code to show the developers what they are really retrieving. Obviously,
the requests that can be made with the tool may test various functionalities such as sending

10

requests using various HTTP verbs, specifying query strings and parameters or even using
authentication.

1 curl −−request POST \
2 −−url https://localhost:8080/users \
3 −−header ’authorization: Bearer {{AcessToken}}’ \
4 −d ’{
5 "firstName": "John", \
6 "lastName": "Doe", \
7 "age": 42 \
8 }’

Listing 2.5: An example of POST request that creates user resource on the server using
API endpoint /users.

However, it is a little cumbersome to work directly with curl, since even a simple curl
request may look like in the listing 2.5. Therefore, other frameworks and applications, such
as Postman, were developed.

2.3.2 Continuous Testing with Postman

Postman is a useful tool for testing the functionality of API endpoints. It has a nice UI,
which makes it easy to add or remove parameters, define headers, authorization methods,
and data without the hassle of writing code. It also allows developers to create various
environments, variables, and to save requests, which curl is not designed to do.

Besides providing a friendly user interface for constructing HTTP requests, Postman also
gives developers the ability to write tests against the responses of requests to see if the server
is returning the correct results. Requests constructed in Postman can also be bundled
into a collection and easily exported or shared, making Postman great for collaborating
on and sharing API specifications with other developers. In addition, the collections can
also be used with continuous integration systems so that the same collection used to test
an API locally while developing can also be used to determine whether or not the codebase
should be pushed live onto production.

However, there is a problem with using Postman for continuous testing, because as was
stated in the section 2.1.4, not all HTTP verbs are idempotent. To clarify, what if a de-
veloper creates a test that removes a resource with specified identifier from a database? If
the code covered by the test is bugfree then the resource is removed and the test successful.
Nevertheless, running the test repeatedly will result in the test’s failure as the resource no
longer exist. The solution would be to create a test case that calls the endpoint which
creates the resource, and then using the resource identifier from the response to remove
it. Unfortunately, Postman or any other similar application does not allow to use request’s
response as an input of another request.

11

Chapter 3

Technologies and Frameworks

In this chapter the details of technologies and frameworks that were used for the devel-
opment of the Restty aplication are discussed. In the first sections the Java language
and the Spring and Hibernate frameworks that were used for building the backend of the ap-
plication are introduced. Following the thesis the frontend web application framework An-
gular along with the superset of EcmaScript 6 – the TypeScript language is presented,
as well as the web framework PatternFly and its key features. Finally, the last section
covers the Swagger framework and its usage within the Restty application.

3.1 Introduction to Java
The Java language project was initiated in June 1991 by J. Gosling [7] for use in one of his
“set-top” box projects. The language, initially called Oak, ended up later being renamed
as Java when it was first publicly released by Sun Microsystems in 1995. The language
promised “Write Once, Run Anywhere” (WORA), meaning that compiled Java code can
run on all platforms that support Java without the need for recompilations, as illustrated
in the figure 3.1.

The WORA is achieved by compiling the Java language code to an intermediate repre-
sentation called Java bytecode, instead of compiling the code directly to architecture specific
machine code. When compiled, the bytecode is executed by a Java Virtual Machine, which
is a separate program that is optimized for the specific platform on which the Java code is
run.

However, the Java’s portability is not its only advantage over other languages that
can be used to build backend of a web application. For instance, among the other benefits
belongs the automatic storage management, strong typing, flexible namespace, or standards
for connectivity to relational databases.

To clarify, automatic storage management means that the JVM automatically performs
all memory allocation and deallocation while the program is running. The developers cannot
explicitly allocate memory for new objects or free memory for objects that are no longer
referenced. Instead, they depend on a JVM to perform these operations. The process
of freeing memory is known as garbage collection.

In addition, Java’s flexible namespace makes it perfect for writing complex applications.
That is because Java defines classes and places them within a hierarchical structure that
mirrors the domain namespace of the Internet, which avoids name collisions and allows
Java applications to be distributed.

12

Windows JVM Mac OS JVMLinux JVM

Java code (.java)

Java compiler

Byte code (.class)

Windows Mac OSLinux

Figure 3.1: Illustration how Java ensures the “Write Once, Run Anywhere” property.

3.1.1 Basics of Java’s syntax

The syntax of Java is largely influenced by C++. However, unlike C++, which combines
the syntax for structured, generic, and “object-oriented” programming, Java was built al-
most exclusively as an “object-oriented” language. All code is written inside classes, and ev-
ery data item is an object, with the exception of the primitive data types such as integers,
characters and boolean values, which are not objects for performance reasons.

Following the above, a Java program can be defined as a collection of objects that
communicate via invoking each other’s methods. To clarify, object is an instance of a class,
which is a template that describes the behavior and state that the object of its type supports.
The behavior is described via methods, where the logics are written, data is manipulated
and all the actions are executed.

Nevertheless, as was mentioned above, Java was influenced by C++ therefore it is not
a surprise that the syntax is similar. However, there are some differences.

1. Java is case sensitive, which means identifier Hello and hello would have different
meaning in Java.

2. For all class names, the first letter should be in upper case. If several words are used
to form a name of the class, each inner word’s first letter should be in upper case.

3. All method names should start with a lower case letter. If several words are used
to form the name of the method, then each inner word’s first letter should be in upper
case.

4. The name of the class file should exactly match the class names. That is because
if the file name and the class name do not match, the program will not compile.

Overall the Java’s syntax and best practices are quite extensive, starting with basics
like identifiers, modifiers, arrays or interfaces and ending with more advanced features like
generics, annotations and lambda expressions that were added to the language specification

13

over the years. Unfortunately, these specifications are not the subject of the thesis to be
explained in detail.

3.2 Building a RESTful Web Service
Even though Java is powerful language, building a backend of an enterprise application
in plain Java is no easy task. Fortunately, there are many libraries and frameworks that
provides a way of creating high performing, testable web applications with ease. One
of the most popular is the Spring Framework [2], which is an open source Java platform,
initially released in June 2003. Spring can be used for development of any Java application,
but shines when used for building web applications on top of the Java EE platform. Spring
targets to make J2EE development easier to use and promotes good programming practices
by enabling a “POJO-based1” programming model.

3.2.1 The Advantages of Using Spring Framework

First and foremost, the technology that Spring is most identified with is the Dependency
Injection (DI) flavor of Inversion of Control (IoC). The IoC is a general concept, and it can
be expressed in many different ways. Dependency Injection is merely one concrete example
of IoC.

When writing complicated Java application, the application classes should be as inde-
pendent as possible of other Java classes to increase the possibility to reuse these classes
and to test them independently of other classes while unit testing. Dependency Injec-
tion helps in gluing these classes together and at the same time keeping them indepen-
dent. To clarify, consider an application which has a text editor component and the de-
veloper wants to provide a spell check to said component. The standard code would
look similar to the code in the listing 3.1, creating a dependency between TextEditor
and the SpellChecker classes.

1 public class TextEditor {
2

3 private SpellChecker spellChecker;
4

5 public TextEditor() {
6 this.spellChecker = new SpellChecker();
7 }
8

9 }

Listing 3.1: The standard way of providing spell checking to a component.

As can be seen in the listing 3.2, in an inversion of control scenario, the developer would
create code differently, in this scenario the total control was removed from the TextEditor
class and the dependency (i.e. SpellChecker class) is being injected into the TextEditor
through a class constructor. Thus the flow of control has been “inverted” by Dependency
Injection because the developer effectively delegated dependencies to an external system.

1In software engineering, a Plain Old Java Object (POJO) is an ordinary Java object, not bound by any
special restriction and not requiring any class path.

14

1 public class TextEditor {
2

3 private SpellChecker spellChecker;
4

5 public TextEditor(SpellChecker spellChecker) {
6 this.spellChecker = spellChecker;
7 }
8

9 }

Listing 3.2: The Inversion of Control scenario of providing a SpellChecker to the TextEditor
component.

The other key advantage of Spring is the Aspect Oriented Programming (AOP) frame-
work. AOP entails breaking down program logic into distinct parts called concerns. The func-
tions that span multiple points of an application are called “cross-cutting” concerns and are
conceptually separate from the application’s business logic. As mentioned earlier, the key
unit of modularity in OOP is the class, whereas in AOP the unit of modularity is the aspect,
which is the combination of the pointcut and the advice 2. As DI helps decouple the applica-
tion objects from each other, AOP helps decouple “cross-cutting” concerns from the objects
that they affect. To clarify, the AOP module provides interceptors to intercept an applica-
tion meaning when a method is executed, the developers have the option to add an extra
functionality before or after the method execution using the interceptors.

3.3 Persisting Data With Hibernate
Even though the Spring Framework covers a lot of functionality needed to build complex web
application and adds significant enhancements to the data access layer of Java language, it
is still best to use external ORM3 framework. For the development of the Restty application
I’ve chosen to use the Hibernate framework [9] on top of the H2 database.

Hibernate is a high performance ORM solution for Java, created by G. King in 2001. Hi-
bernate maps Java classes to database tables, Java data types to SQL data types and relieves
the developer from most of common data persistence related programming tasks. Hiber-
nate consists of layered architecture which helps the developer to operate without having
to know the underlying APIs, as illustrated in the figure 3.2. It makes use of the database
and configuration data to provide persistence services (and persistent objects) to the ap-
plication. The entire concept of Hibernate is to take the values from Java class attributes
and persist them to a database table. To provide such functionality, the classes should
follow specific rules.

1. A class that will be persisted needs a default constructor.

2. All classes should contain an ID in order to allow easy identification of the objects
within Hibernate and the database. The ID property is mapped to the primary key
of a database table.

3. All attributes that will be persisted should be declared private and have appropriate
getters and setters defined in the JavaBean style.

2Advice describes a class of functions which modify other functions when the latter are run.
3“Object-relational” mapping (ORM) is a programming technique for converting data between incom-

patible type systems using “object-oriented” programming languages.

15

Database

application.properties XML Mapping

Hibernate

Persistent Objects

Application

Figure 3.2: High level view of the Hibernate framework architecture.

As can be seen in the listing 3.3, a class is mapped to the database using Hibernate’s
annotations on the entity. Hibernate’s annotations are a way of providing the meta-
data for the ORM mapping. All the metadata is clubbed into the POJO Java file along
with the code, which helps the developer to understand the table structure and POJO
simultaneously during the development.

1 @Entity
2 @Table("users")
3 @SequenceGenerator(name = "users_id_sequence", allocationSize = 1)
4 public class User {
5

6 private Long id;
7 private String name;
8

9 @Id
10 @Column(name = "id")
11 @GeneratedValue(strategy = SEQUENCE, generator = "users_id_sequence")
12 public Long getId() {
13 return id;
14 }
15

16 public void setId(Long id) {
17 this.id = id;
18 }
19

20 @Column(name = "name")
21 public String getName() {
22 return name;
23 }
24

25 public void setName(String name) {
26 this.name = name;
27 }
28

29 }

Listing 3.3: POJO class that features the advantages of ORM.

16

When mapping the entity, Hibernate detects the annotations and accesses the properties
through getter and setter methods by default. The primary key of the table is determined
by the @Id annotation, which by default will automatically determine the most appropriate
primary key generation strategy to be used. However, the default generation strategy can
be overriden by applying the @GeneratedValue annotation, which takes two parameters –
strategy and generator.

1 CREATE TABLE public.users
2 (
3 id bigint NOT NULL,
4 name character varying(255,
5 CONTRAINT users_pky PRIMARY KEY (id)
6)

Listing 3.4: The SQL code that is generated by Hibernate when mapping the entity
from the listing 3.3.

The second advantage of using Hibernate is Hibernate Query Language (HQL) which
is an “object-oriented” query language, similar to SQL, but instead of operating on tables
and columns, HQL works with persistent objects and their properties. The queries are
translated by Hibernate into conventional SQL queries, which in turns perform an action
on the database. Although it is possible to use SQL statements directly with Hibernate’s
Native SQL, it is not recomennded because of possible database portability hassles and Hi-
bernate’s SQL generation and caching strategies.

1 StringBuilder hql = new StringBuilder(" FROM ");
2 hql.append(User.class.getName());
3 hql.append(" WHERE name = :name ");
4

5 Query query = session.createQuery(hql.toString());
6 query.setString("name", name);
7 return query.list();

Listing 3.5: An example of HQL query that selects users with name “John Doe”.

3.4 What is Angular?
Angular [5] is an open source TypeScript framework used to build web applications in HTML
and TypeScript. It makes it easy to build an application as it combines declarative tem-
plates, dependency injection, “end-to-end” tooling, and integrated best practices to solve
development challenges.

3.4.1 Beginning as AngularJS

Angular originally started as AngularJS, it was developed in 2009 by M. Hevery [6] as the soft-
ware behind an online JSON storage service that would have been priced by the megabyte,
for “easy-to-make” applications for the enterprise. However, the business idea was soon
abandoned and AngularJS was released as an open source library in October 2010.

The framework was used to overcome obstacles encountered while working with Single
Page applications4. However, because some of the core assumptions in AngularJS needed

4A single page application (SPA) is a web application or web site that interacts with the user by dynam-
ically rewriting the current page rather than loading entire new pages from a server.

17

to be changed, in September 2016 saw the light of the day a complete rewrite of AngularJS.
Originally, the rewrite was called “Angular 2” by the team that built it, but this led
to confusion among developers. To clarify, the team announced that separate terms should
be used for each framework with “AngularJS” referring to the 1.X versions and “Angular”
without the “JS” referring to version 2 and up.

As the new version of the framework was developed, some new concepts appeared.
In addition to better “event-handling” capabilities, powerful templates, and better support
for mobile devices, Angular introduced several new features.

1. The earlier version of Angular had a focus of controllers, but now has changed the fo-
cus to having components over controllers. Components help to build applications
into many modules which helps in better maintaining the application over a period
of time.

2. The newer version of Angular is based on TypeScript which is a superset of JavaScript,
maintained by Microsoft. More information about TypeScript will be provided later
in the section 3.5.

3. The newer version of Angular introduced services which are a set of code that can
be shared by different components of an application. For instance, consider a data
component that picks data from a database, it is possible to have it as a shared service
that could be used across multiple components.

3.4.2 Angular’s Core Concepts

As mentioned in previous section, Angular introduces the two core concepts – components
and services, respectively the dependency injection. An Angular application will always
have a root component that contains all other components. In other words, an application
will always have a component tree, in which components are a logical piece of code that
consists of following parts:

1. Templates that are used to render the view for the application. They contains
the HTML that needs to be rendered as well as the bindings and directives.

2. Classes that are like a classes defined in any language, such as C, except they are
defined in TypeScript. Classes contains properties, methods, and the code which is
used to support the view.

3. Metadata that contains an extra data defined for the Angular class. They are defined
using a decorator.

To clarify, consider an example from the listing 3.6 which contains all three parts.
It defines a class called HelloWorldComponent which contains only one property – title.
The component is then defined using the @Component decorator that contains HTML
template which is the view that needs to be rendered in the application.

18

1 @Component ({
2 selector: ’my−app−hello−world’,
3 template: ‘
4 <div>
5 <h1>{{title}}</h>
6 </div>
7 ‘,
8 })
9 export class HelloWorldComponent {

10 title: string = ’Hello World!’;
11 }

Listing 3.6: An Angular class with the @Component decorator and a HTML template.

The second cornerstone of an Angular application is dependency injection. The idea
behind it is pretty simple, as illustrated in the figure 3.3. If a component that depends
on a service is needed, the developers do not create the service by themselves. Instead they
request one in the constructor and the framework will provide one. This approach leads
to more decoupled code which enables testability and easier maintainence.

Service Implementation

Service Interface

depends on implements

is providedComponent

Figure 3.3: Angular’s way of injecting and instantiating services in the components.

To clarify, consider an example from the listing 3.7. The listing contains a simpli-
fied service that has a method that returns an array of users. If a component is created
and an argument of type UserService is passed to the component’s constructor as a param-
eter, Angular automatically instantiates and injects the service into the component.

As can be seen, the Angular’s dependency injection module is flexible, and easy to use
because the objects can be injected only via constructors. In addition, the injectors form
a hierarchy, and the injectable object does not have to be an “application-level” singleton
as it might by default in Spring framework.

19

1 export class UserService {
2 users: User[] = [];
3

4 findUsers(): User[] {
5 // Code used to retrieve the users
6 return users;
7 }
8 }
9

10

11 @Component {
12 ...
13 }
14 export class UsersComponent {
15 users: User[] = [];
16

17 constructor(userService: UserService) {
18 this.users = userService.findUsers();
19 }
20 }

Listing 3.7: An example of dependency injection in Angular.

3.5 Introducing TypeScript
In september 1995 JavaScript was first introduced as a language for the client side. It was
used to make webpages interactive and to provide online programs, including video games.
However, as JavaScript code grows, it tends to get messier, making it difficult to maintain
and reuse. Moreover, its failure to embrace the features of Object Orientation, strong type
checking and “compile-error” checks prevent JavaScript from succeeding at the enterprise
level as a “full-fledged” server side technology. TypeScript was presented to bridge this gap.
Its main goals were to provide an optional type system and planned features from future
JavaScript editions to current JavaScript engines.

3.5.1 Why Add Types to JavaScript

Types have proven ability to enhance code quality and understandability. Increasing
the agility when doing refactoring and being one of the best forms of documentation a de-
veloper can have. However, types have a way of being unnecessarily ceremonious. Therefore
TypeScript is very particular about keeping the barrier to entry as low as possible, only
providing compile type safter for the JavaScript code. The great thing is that the types are
completely optional.

TypeScript provides data types as a part of its optional type system, as illustrated
in the figure 3.4. As a super type of all types, the any data type is used. It denotes
a dynamic type and using it is equivalent to opting out of type checking for a variable.
That suggests that the variable may be declared with no type which means that the type
of the varible will be inferred by the TypeScript Language Service. All other “built-in”
types and “user-defined” types inherit from the any type.

It is important to mention that the “built-in” types undefined and null may look similar
but are not the same. A variable initialized with undefined means that the variable has no

20

value or object assigned to it, while null means that the variable has been set to an object
whose value is undefined.

Any
the super type of all data types

User-defined types
arrays, enums, classes, interfaces,

etc.

Built-in types
number, string, boolean, void, null,

and undefined

Figure 3.4: Classification of data types in TypeScript.

The main advantage is however that the JavaScript code files with the “.js” suffix can
be renamed to a files with “.ts” suffix and TypeScript will give back a valid equivalent
to the original JavaScript file. That is because TypeScript is intentionally and strictly
a superset of JavaScript with optional type checking.

3.5.2 Future JavaScript

The second goal of TypeScript was to provide planned features from future JavaScript
editions. Nowadays, it provides a number of features that were planned in EcmaScript 65

for current JavaScript engines. For instance, the language features modules and “class-
based” orientation as well as features like generics and type annotations that are not part
of the specification.

In conclusion, even thought we could use JavaScript with Angular, TypeScript feels like
a superior choice, not only because it is strongly typed and supports object oriented pro-
gramming, but because of the TypeScript’s transpiler which provides the “error-checking”
feature. Unlike JavaScript, the TypeScript is not an interpreted language and will compile
the code and generate compile errors if it finds some sort of syntax errors. Thus helps
to highlight the errors before the script is run hence, saving time trying to find the bugs
in the code.

3.6 Styling with PatternFly
The success of an application depends on a “well-designed” user interface. The good or bad
design can influence the perceived usability of an application, and if the application’s design
is not done well, the whole application can be badly perceived. The PatternFly framework
was developed specifically to address this issue.

One of the main things that sets the framework apart from other libraries, such as Boot-
strap, is the focus on design for IT enterprise applications. It recognizes the importance
for a user to be able to migrate seamlessly from one product to another without having
to relearn the UI. Behavioral consistency leads to better usability because users are familiar
with the interactions. Visual consistency establishes a look and feel that users recognize
and allows it unify disparate projects, make them look great and make them look like they
belong in the same portfolio.

5The EcmaScript specification is a standardized specification of a scripting language.

21

PatternFly is an open source project that is based on Bootstrap [12], a “mobile-first”
frontend framework for creating web sites and applications. It is developed using Less,
a cascading style sheet “pre-processor” that extends the CSS language and adds features
that allow variables, mixins, functions, and other techniques that allow developers create
code that is maintainable, themeable and extendible. This allows the developers to add any
required “app-specific” CSS directly into one CSS file, which is more performant, and make
any necessary adjustments to PatternFly via variable overrides.

The framework consists of a series of Less stylesheets that implements various compo-
nents of the toolkit. The stylesheets are generally compiled into a bundle and included
in the applications, however individual components can be included or removed. Moreover,
the framework provides a number of variables that control styling of various components.
Each component consists of a HTML structure and CSS declarations, and in some cases
accompanying JavaScript code.

3.6.1 Using the Components

The framework comes by default with various design templates for typography, tables,
forms, buttons, and other interface components that can be used building the application –
saving lots of time and efforts in the development process. The templates are made available
as “well-factored” CSS classes that the developers can apply to the HTML to achieve
different effects. By using semantic class name like .alert or .alert-success, the components
are easily reusable and extensible. Although PatterFly uses descriptive class names that
have a meaning, it is not specific about implementation details. Therefore all classes can
be overriden with custom style and still, the meaning of the class will remain the same.

1 <div class="container">
2 <div class="alert alert−success">
3
4 Hello World!
5 This is an example of an alert in PatternFly.
6 </div>
7 </div>

Listing 3.8: An example of styling the component using predefined class .alert.

As can be seen in the figure 3.5, the code snippet from the listing 3.8 generates a com-
ponent that contains the “Hello World!” text. Using the semantic class names, the code
is easily styled, allowing the developer to spend more time on application specific features
and functions rather than application designs.

Hello World! This is an example of an alert in PatternFly.

Figure 3.5: Illustration of a component styled using the semantic classes from PatternFly.

3.6.2 Working with the Grid

In the beginning of this section it was mentioned that the PatternFly, respectively its pre-
decessor Bootstrap, was developed with a “mobile-first” design philosophy, which resulted
in a framework that is responsive by design. The end result is that it easily and efficiently

22

scales with a single code base, from phones, through tablets, to desktops. The responsive-
ness is achieved using a fluid grid system that can be applied to appropriately scale up
to 12 columns according to the size of the device or viewport. The grids provides struc-
ture to the layout, defining the horizontal and vertical guidelines for arranging content
and enforcing margins.

As can be seen in the listing 3.9, to use the grid system, a few rules have to be followed.
Grid column elements have to be placed inside row elements, which creates horizontal
groups of columns. It is possible to have as many rows as needed, but it is necessary that
the columns are immediate children of rows. In a full row, the column widths are any
combination that adds up to 12, however it is not mandatory to use all available columns.

1 <div class="container">
2 <div class="row">
3 <div class="col−md−6">First column</div>
4 <div class="col−md−6">Second column</div>
5 </div>
6 <div class="row">
7 <div class="col−md−3">First column</div>
8 <div class="col−md−3">Second column</div>
9 <div class="col−md−3">Third column</div>

10 <div class="col−md−3">Fourth column</div>
11 </div>
12 </div>

Listing 3.9: An illustration of the grid system in PatternFly.

The rows have to be placed in a “fixed-width” layout wrapper that has a .container class
attached and a width of 1170px or in “full-width” layout wrapper, which has .container-fluid
class attached, and which enables the responsive behavior in that row. The grid system
is based on four tiers of classes – xs for phones, sm for tables, md for desktops, and lg
for larger desktops. These classes define the sizes at which the columns collapse or spread
horizontally.

3.7 Introduction to Swagger Framework
Swagger [11] is an open source framework for designing and describing APIs. It was devel-
oped by Reverb Technologies in 2010 to solve the need for keeping the API design and doc-
umentation in sync. It provides a large ecosystem of tools that helps developers design,
build, document, consume, and test RESTful web services. It defines a standard, language
agnostic interface to APIs which allows both humans and machines to discover and un-
derstand the capabilities of the service. The standard is called the OpenAPI Specification
which is a specification for “machine-readable” interface files. The files are essentially a re-
source listings of the API which adheres to the specification. The files are either of YAML
or JSON format and contains a detailed description of the entire API. Nowadays there are
two ways to create such file.

1. “Top-down” approach, or “design-first” which means using Swagger to design the API
before writing any actual code.

2. “Bottom-up” approach, or “code-first” which means using Swagger to document
the API of an existing code.

23

3.7.1 Using the Swagger

In the past, it was popular to use the “code-first” approach which is much easier because
the developers can make adjustmens on the fly, and it fits nicely into an Agile delivery pro-
cess. But because very often, the developers are not thinking about the design, it can make
the API difficult to understand and document. To solve this, Swagger supports various
annotations, as can be seen in the listing 3.10, that allow developers to specify the details
of the documentation. The alternative way is to let Swagger figure out the documentation
by itself based on the annotations from Spring framework6. Under the hood, it scans Spring
controllers on “start-up” and registers a documentation controller that exposes the oper-
ations Spring controllers implement. The documentation follows the specification – any
client that understands the specification can use the API. The important thing is that
the documentation is based on the code itself, therefore any change to the code is reflected
on the documentation. There is no need to maintain an external document.

1 @RestController
2 @RequestMapping("/users")
3 @Api(value = "users", description = "Users endpoints")
4 public class UserController {
5

6 @Autowired
7 private UserService userService;
8

9 @GetMapping
10 @ResponseStatus(HttpStatus.OK)
11 public List<User> findAll() {
12 return userService.findAll();
13 }
14

15 @PostMapping
16 @ResponseStatus(HttpStatus.CREATED)
17 public User create(@RequestBody UserDto userDto) {
18 return userService.create(userDto);
19 }
20

21 @DeleteMapping
22 @ResponseStatus(HttpStatus.NO_CONTENT)
23 @RequestMapping(value = "/users/{userId}")
24 public void remove(@PathVariable Long userId) {
25 userService.removeById(userId);
26 }
27

28 }

Listing 3.10: An example of Spring controller with Swagger’s annotations that can be used
to generate API documentation.

On the other hand, the push for clear, easy to read documentation has popularized
the “design-first” approach. Not only more developers can have input on the documentation,
but it actually results in cleaner code, because the developers are forced to think simpler,
more concise, and easy to follow. The framework contains an editor that allows to write
up the documentation in appropriate formats and have it automatically compared against
the Swagger specification. Any mistakes are flagged, and alternatives are suggested. This
way, when developers publish the documentation they can be sure that it’s “error-free”.

6Swagger is a specification, and supports a wide range of frameworks and their annotations.

24

As can be seen in the listing 3.11, the documentation consists of 2 parts, the operations
and the models.

In either case the framework exposes the endpoints from the documentation controller
and makes them accessible which allow for applications to be built upon the documentation.
The application that will be developed in the thesis will take an advantage of the exposure.
It will take an existing JSON document created by the framework and build an interactive
documentation and testing environment upon it.

1 {
2 "apiVersion": "1.0",
3 "swaggerVersion": "1.0",
4 "basePath": "http://localhost:8080",
5 "resourcePath": "/users",
6 "apis": [
7 {
8 "path": "/users",
9 "description": "Users endpoints",

10 "operations": [
11 {
12 "httpMethod": "GET",
13 "summary": "findAll",
14 "deprecated": "false",
15 "responseClass": "List[User]",
16 },
17

18 ...
19]
20 }
21],
22 "models": [
23 "User": {
24 "properties": {
25 "id": {
26 "type": "long"
27 },
28 "firstname": {
29 "type": "string"
30 },
31 "lastname": {
32 "type": "string"
33 }
34 }
35 }
36

37 ...
38]
39 }

Listing 3.11: An example of API documentation in JSON format created using the Swagger
framework.

25

Chapter 4

Application Design

This chapter covers the requirements for the Restty application and presents the appli-
cation’s model and design drafts in detail. The model is designed using Entity Relation-
ship Diagram which describes the entities and their relations, and may be useful for vi-
sualizing database design ideas, identifying the mistakes and design flaws before creating
the database. The design drafts on the other hand, can help reveal any clashing visual
elements while it is still easy to change them before writing the code. Moreover, the drafts
allow to fully flesh out the ideas and choose the best possible options. The design drafts
pictured in the following sections consists of separate UI elements that once combined,
represents the final design draft of the application.

4.1 The Restty’s Model
The application, as illustrated in the figure 4.1, consists of three major entities – projects,
endpoints and test cases. It will allow users to create multiple projects to work on, with ev-
ery project containing various endpoints and test cases. Each project, specified by its name
and the Swagger’s API file, draws its endpoints from that said file. Depending on the content
of the file, endpoints may vary in headers (specified for the particular endpoint or for all
of them), response statuses and parameters. The parameters may vary in types, for in-
stance the endpoint can contain path variables, query parameters, or body data, which can
be either primitive data types or objects that are represented by model entities.

In addition, the application contains test cases. Test cases consists of unspecified amount
of endpoints that can have separate settings – custom values of parameters or models,
for each test case. In addition, both the endpoint and test cases will contain logs of previous
test runs, to provide users information about the tests that were executed in the past,
and their results.

4.2 Requirements for the Restty Application
As mentioned earlier, the aim of the thesis is to create an application that allows to test
endpoints of interfaces of other applications as well as to create extensive test cases from said
interfaces. The interface that should be tested will be provided via the Swagger’s JSON
file which contains all necessary information about the interface. Therefore the Restty
has to allow the users to choose the application’s interface upon which the Restty will
work. If the interface and its endpoints is successfully loaded and the data are persisted

26

Project

Id
Name
Source
Path

1

Endpoint

Id
Path
Method
Description

1 .. N

Header

Id
Header
Value
Global

Endpoint Header

Enabled

Response

Id
Status
Description

Model

Id
Name

Parameter

Id
Type
Name
Required
Parameter
ParameterValue

Attribute

Id
Name
Type
Value

Test Case

Id
Name
Description

Test Case Settings

Id

Log

Id
ResponseStatus
ResponseMessage
Run
Success

1

0 .. N

1

0 .. N

0 .. N

1

0 .. N

0 .. N

1

0 .. N

1

1

0 .. N

1

1

0 .. N

0 .. N

0 .. 1

1

0 .. N

1

0 .. N

0 .. 1

0 .. N

1

1 .. N

Figure 4.1: The ER Diagram that describes how the entities relate to each other within
the application.

in the database, the user will be redirected to the dashboard which will display basic
statistics about the current state of the endpoints and test cases.

From the dashboard the users will be able to navigate to the overview of all interface’s
endpoints, their details, configurations and past test runs. In addition, the users should
be able to navigate to the similar overview with test cases, which the users can create
using the Restty’s Test Case Creator (TCC). The TCC should allow create test cases that
can combine various endpoints. To clarify, it should be possible to test an API’s endpoint
and use its output as an input of another endpoint.

4.3 Design drafts
As mentioned earlier, the design drafts were created to reveal any clashing visual elements
before writing the code. However, even though the thesis presents the final drafts of the ap-
plication, it is still possible that parts of the design will be changed during the development
process.

27

4.3.1 Designing the Project Explorer

The entry point of the application should be the Project Explorer. The Project Explorer,
illustrated in the figure 4.2, should allow users to create and manage the projects cre-
ated within the Restty. Each project should have a unique name which distinguishes it
in the application. When the project is created by the user, besides its name, it needs
to have specified a source of the project’s endpoints. As a source (in form of a URL) is con-
sidered Swagger JSON with information about the project’s interface. The source should
be then passed to the Restty’s backend that should make an request for the interface, parse
the request’s response and persist the information about interface’s endpoints, its param-
eters, responses, and models, to the database. If the project information are successfully
persisted in the Restty’s database, the user should see the newly added project and its
attributes, such as amount of endpoints and test cases, in the Project Explorer’s list table.

RESTTY

My Projects Filter by keyword Sort by Name Create Project

126 Endpoints 42 Test casesUniversity IS
Project source URL

Figure 4.2: The Project Explorer that contains list of projects created in the Restty appli-
cation.

Overall, the list table should show the users some basic information about their projects
and should allow them to manage them. Finally, by clicking on the list item the users should
be redirected to the specified project’s dashboard.

4.3.2 The Project Dashboard

The dashboard is the entry point of each specific project. As can be seen in the figure 4.3, it
consists of a horizontal and vertical navigation bars, donut charts and tables that contains
latest information about the project. To keep things simple, the horizontal navigation bar
should allow users to swiftly switch between projects without the need to access the Project
Explorer. On the other hand the vertical navigation bar should allow users to quickly
navigate between the project’s endpoints, test cases and settings.

However, the main aim of the Dashboard is to show the current state of the project
to the user. Which is achieved by showing the user two donut charts and two tables.
The donut charts displays the state of the project’s endpoints and test cases – how many
of them were successfully (or not) tested, or if they were not tested at all. The tables
on the other hand shows the user the information about the recent API or test runs.
The Recent table shows the user last five runs no matter if they were successful or not.
Whereas the Failures table shows the user unsuccessful runs only, if there are any. From
there on, using the navigation bar or the quick navigation in the tables, users can start
exploring the endpoints or the tests.

28

RESTTY

Test cases

Dashboard

API

University IS

Statistics

2
Failures

API test runs

Success Failure

9
Failures

Test case runs

Success Failure

Name Type Last run Success

4 days agoEndpoint/students

Method

POST

Failures

Name

/students

Type Last run

4 days agoEndpoint

Method

GET

Recent

7 days agoEndpoint/subjects/{id} PUT

Settings

Figure 4.3: The dashboard of a project with lastest information about test runs.

4.3.3 Exploring the Endpoints

Once the users start working with the application, they should be able to view, manage
and run the API endpoints they imported. However, as explained in the section 2.3, many
applications which provide an overview of the endpoints does not scale well enough if they
have to display a large number of the endpoints. To address this issue, the Restty puts
the endpoints into filterable list table with a simple expansion for each item.

As illustrated in the figure 4.4, each item contains information about its last test run
and its success. Moreover, the item’s expansion contains the details of the item’s particular
endpoint such as request headers, path variables, parameters and responses.

In addition, when clicking on the endpoint’s name, its detail is displayed. The detail
consists of a tab view with three tabs. The first tab is similar to the list item’s extension,
showing the information about request and responses. The next one contains a configuration
that allows to make changes to the endpoint e.g. changing the request params, body
or headers. The last tab contains records of previous test runs, so that users know in which
point the endpoint stopped working or when was the endpoint’s code fixed.

4.3.4 The Test Cases

Even though it is important to enable users to work with the endpoints directly, the main
focus of the Restty is on test cases. When users view the test cases page, they should
be able to manage them. The management of the test cases is outlined using the table
with filtering, sorting and pagination components. Moreover, each item in the table contains
basic information about the specific test case (e.g. the date of last run, its success etc.).

Upon clicking on the test case’s name, its detail is shown in a similar fashion as the end-
points detail. The view consists of a tab view, in which the most important tab is the con-

29

PUT

/subjects/{subjectId}
Success

Request Response

Code Description

200 Successful operation

Values | Model

{
 "id": 1,
 "name": "Master's Thesis",
 "abbr": "DIP"
}

404 Subject not found

Headers Values

application/jsonContent-Type

Parameters Values

1subjectId*

body
*

{
 "name": "Master's Thesis",
 "abbr": "DIP"
}

| Model

Last run
9 days ago

Figure 4.4: Expanded API endpoint in the endpoint’s list table.

figuration tab – containing the Test Case Creator (TCC). The design of TCC is based
on canvas, which is a HTML 5 element that allows for dynamic, scriptable rendering of 2D
shapes and bitmap images. TCC was designed as an dynamic editor that allows users
to build test cases using various endpoints an other test cases. The idea behind it is that
the users will be able to construct complex test cases in the same way as they would create
a linked list1.

GET /students/{studentId}

POST /students

DELETE /students/{studentId}

SaveCancelToolbox
Endpoints Test cases Delete Undo Redo

API Endpoints

/students

Search

GET /students
GET /students/{studentId}
POST /students
DELETE /students/{studentId}

/subjects
POST /subjects
GET /subjects

Figure 4.5: The TCC with an example of a test case.

The TCC consists of several parts. All of them together allow users to model desired test
cases using the drag and drop functionality. To clarify how it works, consider an example
from the figure 4.5. In the figure, using the drag and drop functionality was inserted several
endpoints from the list to the canvas. When the endpoint is dropped, a modal window,
as illustrated in the figure 4.6, with the endpoint’s details appears. Note that the window
is prefilled with the endpoint’s details, loaded from its configuration.

However, it is important to notice that the behavior specified above is applied only
to first endpoint that is added to the canvas. For the following endpoints, the input data is

1 A linked list is a linear collection of data elements, in which linear order is not given by their physical
placement in memory. Instead, each element points to the next. It is a data structure consisting of a group
of nodes which together represent a sequence.

30

automatically derived from the previous endpoint output. Once again, consider an example
from the figure 4.5 that demonstrates how the data are passed bewteen the endpoints.
In the beginning a student resource is found or created and afterwards immediately deleted,
testing the deletion of the student resource.

Add endpoint

Authentication

application/jsonContent-Type

Cancel Save

Headers

Parameters

 Bearer mZ1edKKACtPAb7zGlwSzvs72PvhAb

Request Body

{
 "firstName": "John",
 "lastName": "Doe",
 "title": "Bc.",
 "age": 24
}

42studentId

Figure 4.6: A modal window that appears when adding first endpoint to the canvas.

31

Chapter 5

Implementation and Testing

The chapter covers the implementation of the Restty application, based on the designs
presented in the previous chapter, and its testing using the Red Hat JBoss BPM Suite
application as a source of API endpoints to test. Backend of the application is imple-
mented using Java 8, MVC framework Spring Boot, persistence framework Hibernate 5
and in memory database H2. The frontend is implemented using Angular 5, TypeScript
language and the web framework PatternFly.

5.1 Separation of Concerns
Before diving into the implementation, it is important to specify the separation of concerns
between the presentation layer (frontend), and the data access layer (backend) of the ap-
plication. The frontend is primarily implemented using Angular while backend is imple-
mented using Spring Boot. Combining these frameworks allows the creation of a minimal,
but runnable, application with as little dependencies and setup as possible.

Therefore by following the separation of concerns principle, the application is split
into separate Maven modules for the frontend and backend, where each module has its
own POM1 configuration file linked to the parent configuration file. To build the Angular
application with Maven, the frontend’s POM file have to contain the Frontend Maven Plugin
dependency, which is needed to install prerequisities needed by the application and to keep
the frontend and backend builds as separate as possible. However, even with the Frontend
Maven Plugin the Angular application will not ended up in the final jar. To ensure that,
the packaged Angular application have to be added to backend’s resources. This whole
approeach ensures the separation of concern principles and allows the whole application
(frontend and backend) to be build using Maven’s install command only.

5.2 Structure of the Frontend
When implementing the Restty, the most important task is to structure the application’s
code the right way. Ideally, the whole application should be a tree of components that
implement clearly defined inputs and outputs, and minimize “two-way” databinding. That
way, it is easier to predict when data changes and what the state of a component is.

1A Project Object Model (POM) is the fundamental unit of work in Maven. It is an XML file that
contains information about the project and configuration details used by Maven to build the project.

32

When developing Restty, the goal was to create an application that is scalable and con-
sists of reusable, well encapsulated components that are easy to maintain and refactor.
To follow these rules the application was divided into three parts, as can be seen in the fig-
ure 5.1.

Masthead Component

Vertical Navigation - Breadcrumbs

Vertical N
avigation

Project Details Component

Figure 5.1: The structure of a Restty’s main layout components.

The only component that is always present is the Masthead that serves as an app’s
header, containing the Restty’s name. It is purposely made using the tall option of the Pat-
ternFly framework to accommodate for larger app’s logo. Following the design, if the users
open a project, the rest of the components appears, with one of them being the global
navigation that is displayed on the left. While vertical navigation menus generally con-
sume more space than their horizontal counterparts, they have become popular as desktop
monitors move to “wide-screen” formats.

Moreover, vertical navigation supports common left to right flow and navigation cat-
egories are easily differentiated from other information that may exist in the header area
of the application. Which in Restty’s case contains a hamburger menu and a breadcrumbs
navigation. The hamburger menu is always visible in the top left corner and allows to use
the vertical navigation even on small devices using @media queries and PatternFly’s navbar-
collapse class, as can be seen in the listing 5.1.

1 @media (min−width: 768px) {
2 .navbar−collapse.collapse {
3 display: block !important;
4 height: auto !important;
5 padding−bottom: 0;
6 overflow: visible !important;
7 }
8 }
9

10 .collapse {
11 display: none;
12 }

Listing 5.1: Media queries on the .navbar-collapse class that enables the navigation bar
to work even on small devices.

Breadcrumbs displays a users location within an application hierarchy and act as a re-
source to help users navigate more efficiently and provide additional context. Note that
the breadcrumbs originally were not part of the designs. They replaced a context selector

33

that should allow for quick changing between various projects, but it was decided that
the breadcrumbs are more useful to the user as the secondary navigation items like tables
are not always exposed.

The last component in the layout is the ProjectDetailComponent that creates a container
for all subpages, such as endpoint and test cases tables, details, etc. As can be seen
in the listing 5.2, the subpages are displayed using routing which is a technique that can
interpret a browser URL as an instruction to navigate to a client generated view.

1 // Handles navigation bar clicks
2 onItemClicked($event: NavigationItemConfig): void {
3 this.contentView = $event.title;
4 if ($event.title === ’Dashboard’) {
5 this.contentView = null;
6 this.router.navigate([’projects’, this.project.id]);
7 } else if ($event.title === ’API’) {
8 this.router.navigate([’projects’, this.project.id, ’api’]);
9 } else if ($event.title === ’Test cases’) {

10 this.router.navigate([’projects’, this.project.id, ’test−cases’]);
11 } else if ($event.title === ’Settings’) {
12 this.router.navigate([’projects’, this.project.id, ’settings’]);
13 }
14 }

Listing 5.2: Solution of routing the subpages in the ProjectDetailComponent.

5.3 Parsing the Swagger’s JSON
When creating the project within the Restty, the application consumes Swagger’s API file
and parses the information about project’s interface from it. As can be seen in the list-
ing 3.11 the content of the file may be extremely large and complicated.

Initially, when creating the project, the source of the file is passed to the backend,
in which the createProject(ProjectDto projectDto) method in the implementation of Pro-
jectService handles the project creation. At first, the content of Swagger’s file is fetched
using the Spring’s RestTemplate class and then it is parsed to Data Transfer Objects (DTO)
of which, the database entities are created.

1 ObjectMapper mapper = new ObjectMapper(_;
2 JsonNode rootNode = mapper.readTree(json);
3

4 String scheme = JsonUtils.getScheme(rootNode);
5 String host = JsonUtils.getPathValue(rootNode, HOST_PROPERTY, false);
6 String basePath = Objects.toString(JsonUtils.getPathValue(rootNode, "basePath", false), "");
7 if (StringUtils.isBlank(scheme) || StringUtils.isBlank(host)) {
8 this.basePath = source.substring(0, source.lastIndexOf("/") + 1) + basePath;
9 } else {

10 this.basePath = scheme + host + basePath;
11 }

Listing 5.3: Parsing the address of the test server from Swagger’s API file.

The file contains various information about the project and its API, but for the Restty’s
purposes it is important to parse only the information about the test server, endpoints
and the models. The information about test server is stored inside the host, basePath
and schemes attributes which, once combined, creates a complete path that will be used

34

as default when making API calls. Note that according to Swagger’s specification, the host
and scheme can be omitted for a more dynamic association. In that case, the host
and scheme used to serve the API documentation is used for API calls.

Once the information about the test server are parsed, the application proceeds to pars-
ing the data for the entities for which it needs to process two attributes – paths and defini-
tions. The paths consists of list of objects where each object represents particular endpoint.
In addition, each endpoint contains objects represented by HTTP methods that are allowed
for the particular endpoint. Finally, each HTTP method object contains the detailed infor-
mation about the endpoint like its description, parameters or responses. On the other hand,
the definitions consist of a list of objects that represents entities used within the imported
project’s API. These definitions are then referenced from the endpoints as parameters or re-
sponse bodies.

1 ObjectNode definitionsNode = JsonUtils.getObjectNode(rootNode, "definitions", false);
2 if (definitionsNode != null) {
3 definitionsNode.fields().forEachRemaining(definitionNode −> {
4 ModelDto model = new ModelDto();
5 model.setName(definitionNode.getKey());
6

7 ObjectNode propertiesNodes =
8 JsonUtils.getObjectNode(definitionNode.getValue(), "properties", false);
9 if (propertiesNodes != null) {

10 propertiesNodes.fields().forEachRemaining(propertyNode −> {
11 AttributeDto attribute = new AttributeDto();
12 attribute.setName(propertyNode.getKey());
13

14 String type =
15 JsonUtils.getPathValue(propertyNode.getValue(), "type", false);
16 if (StringUtils.isNotBlank(type)) {
17 attribute.setType(type);
18 model.addAttribute(attribute);
19 } else {
20 String modelName =
21 JsonUtils.getPathValue(propertyNode.getValue(), "ref", false);
22 if (StringUtils.isNotBlank(modelName)) {
23 attribute.setType(modelName.substring(modelName.lastIndexOf(’/’) + 1));
24 model.addAttribute(attribute);
25 }
26 }
27 });
28 }
29

30 models.add(model);
31 });
32 }

Listing 5.4: Parsing the API’s model definitions from the Swagger’s API file.

5.4 Implementation of the API Testing
This section contains the details about implementation of the cornerstone of the whole
application – how the test cases are created and how they are, along with endpoints,
run. By default, users can run the endpoints straight away but they most likely will
not work. That is because the application does not know the parameter values required

35

by the endpoints. Therefore users are needed to specify the parameters of endpoints to be
used in future endpoints or test cases runs.

1 <div class="flex−info−left request−params bold">
2 <app−edit−param (paramEditEvent)="refreshOnParamEdit($event)" [parameter]="parameter">
3 </app−edit−param>
4 <div class="edit−parameter inline−block">
5
6
7 </div>
8 <div class="inline−block">
9 {{parameter.name}}

10 (query)
11 </div>
12 </div>

Listing 5.5: Frontend’s implementation of setting the parameter’s value in which all logic
is handled by the matching TypeScript file.

Once all parameters required by the endpoint are specified, the users may run the test
using appropriate button. The button is connected to a listener, which, on click, trig-
gers a REST API call to the backend with the id of the endpoint that should be tested.
On the backend, the request is handled by the EndpointController that finds all available
information about said endpoint and, as can be seen in the listing 5.6, passes it to the ap-
propriate service that handles the test.

1 RestTemplate restTemplate = new RestTemplate();
2 HttpHeaders headers = new HttpHeaders();
3 endpoint.getHeaders().stream().filter(header −> header.getEnabled()).forEach(endpointHeader −> {
4 headers.add(endpointHeader.getHeader().getHeader(), endpointHeader.getHeader().getValue());
5 });
6

7 List<Parameter> pathVariables = endpoint.getParameters()
8 .stream()
9 .filter(pathVariable −> ParamType.PATH.equals(pathVariable.getType()))

10 .collect(Collectors.toList());
11

12 String path = endpoint.getProject().getPath() + endpoint.getPath();
13 String resolvedPath = resolvePathVariables(path, pathVariables);
14

15 Optional<Parameter> body = endpoint.getParameters()
16 .stream()
17 .filter(parameter −> ParamType.BODY.equals(parameter.getType()))
18 .findFirst();
19

20 JSONObject jsonBody = new JSONObject();
21 if (body.isPresent()) {
22 body.get().getModel().getAttributes().forEach(attr −> {
23 jsonBody.put(attr.getName(), attr.getValue());
24 }
25

26 HttpEntity<String> entity = new HttpEntity<>(jsonBody.toString(), headers);
27 restTemplate.exchange(resolvedPath, endpoint.getMethod(), entity, String.class);

Listing 5.6: The implementation of a test run in backend’s service.

The test is implemented using Spring’s RestTemplate class which allows calling cus-
tomizable HTTP requests from the backend services. Furthermore, when the test is ex-

36

ecuted, the logs are created for the endpoint or test case that was subject of the test,
keeping the information about the run persisted. Finally, the testing of test cases is imple-
mented in a similar fashion. That is because in fact, a test case is more or less a linked list
of endpoints.

However, there is a slight difference in the test cases implementation. Obviously,
the users might want to use different parameter values for the same endpoint in different
test cases which is not possible with the current implementation of the endpoint’s parame-
ters. Therefore the TextCaseSettings class was created. It links the endpoint with specific
test case and copies the endpoint’s parameters to its own properties which means that
by default, if the endpoint is added to the test case, it contains the parameters that were
specified in the endpoint’s configuration. However, the parameter values in the TestCas-
eSettings class may be modified without it having an effect on the original endpoint’s values.
Overall, this approach allows the users to create test cases with specific conditions which
results in better test coverage of the tested project’s interface.

5.5 Testing with Red Hat JBoss BPM Suite
The testing of the application consisted of two parts. The first part consisted of testing
the Restty’s REST API interface using the cURL and Postman applications which validated
that the backend of the Restty works as expected. The second, more important part,
consisted of the manual testing of the application as a whole using the Red Hat JBoss
BPM Suite application’s remote interface.

5.5.1 Red Hat JBoss BPM Suite’s Basic Concepts

The Red Hat JBoss BPM Suite is an open source business process management suite
that combines Business Process Management and Businnes Rules Management and enables
business and IT users to create, manage, validate, and deploy Business Processes and Rules.
To accomodate Business Rules component, JBoss BPM Suite includes integrated Red Hat
JBoss BRMS which is a comprehensive bussiness automation platform for bussiness rules
management, business resource optimization, and complex event processing.

The Red Hat JBoss BRMS and Red Hat JBoss BPM Suite use a centralized repository
where all resources are stored. This ensures consistency, transparency, and the ability
to audit across the business. Business users can modify business logic and business processes
without requiring assistance from IT personnel.

The application provides tools for creating, editing, running, and runtime management
of BPMN process models. The models are defined using the BPMN2 language, but more
importantly, they can be created using the JBoss BPM Suite API which will be subject
of the testing. To briefly point out options of what BPM Suite can do, it is necessary
to provide a bit of background on what rules, events and processes are.

A business process is a process that describes the order in which a series of steps need
to be executed, using a flow chart. Next, the events specify moments in the execution
process. The events are fired by the BPM’s engine during graph execution. An event is
always relative to an element in the process definition. Last but not least, a business rule
is a rule that defines or contrains some aspect of process and always resolves to either true
or false. In other words, rules are linked with the process models to enforce the correct
policies at each process step.

37

5.5.2 Testing the Restty

As mentioned earlier, the testing was divided into two parts. The first part was focused
on testing Restty’s REST API using cURL at first and Postman later for more complicated
API calls. The API consists of several endpoints which are managed by appropriate con-
trollers on the backend. In this section, the focus will be on testing the ProjectController
that handles all endpoints, in which the path starts with /api/projects.

When starting the application, the users will come in first contact with projects dash-
board e.g. it was needed to create an endpoint that would find all existing projects
in the Restty application. In the listing 5.7 can be seen the code used for testing the said
endpoint, returning the list of all projects within the application.

1 curl http://localhost:8081/api/projects
2 [
3 {
4 "id": 20,
5 "name": "swagger−models",
6 "source": "http://petstore.swagger.io/v2/swagger.json",
7 "tests": 1,
8 "endpoints": 20
9 }

10]

Listing 5.7: Testing the /api/projects endpoint using cURL.

As can be seen in the listing 5.7, the project with BPM Suite’s API is missing, therefore
it is needed to create it using the same endpoint as for finding the projects within the Restty,
but using the POST method. In the listing 5.8 can be seen an example of such API call.

1 curl −−request POST \
2 −−url http://localhost:8081/api/projects \
3 −d ’{
4 "name": "bpm−suite", \
5 "source": "http://localhost:8080/kie−server/services/rest/server/swagger.json" \
6 }’

Listing 5.8: Testing the creating of an project within the Restty.

Once the BPM Suite’s project is created, it is possible to step up in the testing process,
meaning to test the application as a whole using remote interface provided by the project.
In particular, for testing purposes was imported BPM’s process server execution module
which allows users to communicate with the process server through REST API. The first
step might be to test simple GET request, for instance the /server/containers which re-
trieves containers deployed on the test server. After the test is completed, the user is
informed about its result using a PatternFly’s notification. This process may be repeated
multiple times for multiple endpoints furthermore testing the application.

However, as was stated earlier, the functionality to test separate API endpoints is
provided by many other applications. Therefore it is necessary to properly test the func-
tionality of the test cases. Consider a following test case – the user wants to test a deletion
of a process instance. Normally he would have to create the instance manually, retrieve its
id and then delete it using the id. However, using Restty, the process can be automatized.
User may simple create a test case and to that test case insert two API requests. The first
request would be the POST request with parameters filled either from endpoint’s configu-
ration or by the user and the following request would be DELETE request that would use

38

the parameters from the previous request. After running the test, the user is again informed
about its outcome and most importantly, he does not have to modify the test if he would
want to run it again at some point in the future.

5.6 Future extensions
Even though the Restty makes testing much easier for developers, it does not reach its full
potential within the thesis. The testing is an extensive discipline therefore the application
has always room for improvements. To make it even more usable in practice, the following
extensions were suggested.

1. The logs that stores the information about previous test runs could contain more infor-
mation about the run besides the response code and response message. It is possible
to save the exact format of the request, its headers, parameters, etc., and of the re-
sponse.

2. The Project Explorer might offer users to export existing projects or to import projects
that were previously created.

3. The Restty could offer a migration to the newer version of the API, for instance
on the backend could be implemented a cron job that would check if the Swagger’s
API file has changed and if it has it could offer an automatic migration.

4. Finally, the Restty could create trivial test cases on its own – for instance, the tests
for deleting a resource or testing the pagination etc., could be done automatically,
saving time for the developers.

5. The test cases can be extended to allow users create conditions. For instance, the test
case could contain a request that would tried to find a requested resource. If the re-
source does not exist, it could be created by using another appropriate request.

Obviously, the extensions stated above are not the only things that can be added
to the application. It is always possible to optimize, the application itself both in terms
of performance and user experience.

39

Chapter 6

Conclusion

The aim of the thesis was to design and develop an application that allows its users to test
API endpoints of other applications and to create extensive test cases from said endpoints.
As a part of working on the above goal, I studied the topics of Web Services, in particular
the RESTful Web Services and their application programming interfaces. On top of that
I studied the technologies needed for the development of the application and conducted
a research on existing API testing solutions.

In Chapter 4, I designed a custom solution of the problem using the design integrity
of the PatternFly framework. The designs, that were several times consulted in Red Hat,
were used to reveal any clashing visual elements or design flaws before writing the code.
After several reworks and improvements they were used as a basis for the development
of the application.

The development consisted of building the client side (frontend) and the server side
(backend) of the application as separate sections, following the Separation of Concerns
principles. The achievement is that the backend of the application is fully capable of parsing
the Swagger’s API file, running and managing its endpoints, and allowing to create extensive
test cases from said endpoints. In addition, the frontend of the application provides clear
and easy to use interface, even in case of large remote interfaces.

Finally, as stated in the section 5.5, the developed application – Restty, was tested
on Red Hat JBoss BPM Suite application, which provided a large remote interface consisting
of various different endpoints that were used to reveal any errors or bugs in the application
and to learn more about the Restty’s future improvements, such as automatic test case
creation or automatic migrations to the newer versions of the remote interfaces. Overall,
the application serves its purpose and has a potential to become the leading application
for the API testing processes and test automation.

40

Bibliography

[1] Berners-Lee, T.: Uniform Resource Identifiers (URI): Generic Syntax. August 1998.
[Online; visited 20.01.2018].
Retrieved from: https://www.ietf.org/rfc/rfc2396

[2] Dewailly, L.: Building a RESTful Web Service with Spring. Packt Publishing. 2015.
ISBN 978-1785285714.

[3] Fielding, R. T.: Architectural Styles and the Design of Network-based Software
Architectures [dissertation]. University of California, Irvine. 2000.

[4] Fielding, R. T.; et al.: Hypertext Transfer Protocol – HTTP/1.1. June 1999. [Online;
visited 10.12.2017].
Retrieved from: https://tools.ietf.org/html/rfc2616

[5] Frisbie, M.: Angular 2 Cookbook. Packt Publishing. 2017. ISBN 978-1785881923.

[6] Hevery, M.: Hello World, <angular/> is here. September 2009. [Online; visited
17.12.2017].
Retrieved from:
http://misko.hevery.com/2009/09/28/hello-world-angular-is-here/

[7] James Gosling, G. L. S. J., Bill Joy: The Java Language Specification, Java SE 8
Edition. Addison-Wesley Professional. 2014. ISBN 978-0133900699.

[8] Leonard Richardson, S. R., Mike Amundsen: RESTful Web APIs: Services for a
Changing World. O’Reilly Media. 2013. ISBN 978-1449358068.

[9] Mihalcea, V.: High-Performance Java Persistence. VLAD MIHALCEA. 2016. ISBN
978-9730228236.

[10] Richardson, A. J.: Automating and Testing a REST API: A Case Study in API
testing using: Java, REST Assured, Postman, Tracks, cURL and HTTP Proxies.
Compendium Developments Ltd. 2017. ISBN 978-0956733290.

[11] SmartBear Software: Swagger, the world’s most popular API tooling. [Online; visited
10.12.2017].
Retrieved from: https://swagger.io/

[12] Spurlock, J.: Bootstrap: Responsive Web Development. O’Reilly Media. 2013. ISBN
978-1449343910.

41

https://www.ietf.org/rfc/rfc2396
https://tools.ietf.org/html/rfc2616
http://misko.hevery.com/2009/09/28/hello-world-angular-is-here/
https://swagger.io/

[13] Stenberg, D.: cURL: Command line tool and library. 1997. [Online; visited
13.02.2018].
Retrieved from: https://curl.haxx.se/

[14] W3C: Web Services Glossary § Web Service. February 2004. [Online; visited
10.12.2017].
Retrieved from:
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

42

https://curl.haxx.se/
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Appendix A

Installation details

The Chapter covers the details of running the Restty application on local computer. At first
it is required to copy the folder with the project to the local disk. Then it is neccessary
to follow the procedure that consists of two parts. The first part is used to start up
the backend of the application and the steps needed to run Restty’s backend are as follows:

1. Download and install the Java Development Kit of version 1.8.

2. Download and install the Apache Maven project management tool in version 3 or later.

3. Add the Java and Maven to the system variables if running the application on Win-
dows.

4. In the root folder of the project run the command – mvn clean install which installs
neccessary dependencies required by the application.

5. To start the application, in the /backend folder, run the command – mvn spring-
boot:run.

The second part is to start up the frontend of the application which is needed for Restty
to be fully functional. To start up the frontend, following steps must be executed:

1. Download latest version of NodeJS.

2. Install the angular-cli using the command – npm install -g @angular-cli.

3. To start the application, run the ng serve –proxy-conf proxy.conf.json command
in the /frontend/src/main/frontend directory.

43

	Introduction
	Preliminaries and Definitions
	Understanding the Web Services
	Introduction to RESTful Web Services
	Messaging
	Addressing the Resources
	HTTP Verbs
	Representation of the Resources

	Introduction to Application Programming Interfaces
	When is API RESTful?

	The Importance of API Testing
	Beginning with cURL
	Continuous Testing with Postman

	Technologies and Frameworks
	Introduction to Java
	Basics of Java's syntax

	Building a RESTful Web Service
	The Advantages of Using Spring Framework

	Persisting Data With Hibernate
	What is Angular?
	Beginning as AngularJS
	Angular's Core Concepts

	Introducing TypeScript
	Why Add Types to JavaScript
	Future JavaScript

	Styling with PatternFly
	Using the Components
	Working with the Grid

	Introduction to Swagger Framework
	Using the Swagger

	Application Design
	The Restty's Model
	Requirements for the Restty Application
	Design drafts
	Designing the Project Explorer
	The Project Dashboard
	Exploring the Endpoints
	The Test Cases

	Implementation and Testing
	Separation of Concerns
	Structure of the Frontend
	Parsing the Swagger's JSON
	Implementation of the API Testing
	Testing with Red Hat JBoss BPM Suite
	Red Hat JBoss BPM Suite's Basic Concepts
	Testing the Restty

	Future extensions

	Conclusion
	Bibliography
	Installation details

