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Abstrakt
Tato práce se zabývá zpracováním snímků Slunce pořízených kosmickou sondou SDO na
různých vlnových délkách a vizualizací výskytu třikrát ionizovaného uhlíku C IV jejich vhod-
ným složením. V práci jsou uvedeny základní informace o Slunci a jeho atmosféře, dále je
shrnuta potřebná teorie a možné postupy vizualizace, které jsou následně vyhodnoceny a
porovnány. Součástí je i vytvořený program pro snadnou tvorbu snímků vizualizujících uh-
lík C IV.

Summary
The thesis deals with processing of images of Sun taken by SDO space probe on different
wavelengths. The goal is to visualize appearance of three times ionized carbon C IV by suit-
able composition of images. Basic facts about Sun and its atmosphere are stated, followed by
theory and possible visualization approaches, which are in the end evaluated and compared.
Within the thesis is also created software for simple creation of carbon C IV images.
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Uhlík C IV, Fázová korelace, Fourierova transformace, Registrace obrazu, Solar Dynamics
Observatory

Keywords
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Introduction
The Sun is the nearest and most inspected star to us. Nowadays we know a lot about

the life cycle of stars. Despite vast distances, we can categorize and study them based on
their spectra. We can tell how old is the star, what will be its future evolution and how
long will it take. However, these changes are mostly identified with precision on hundreds
millions of years or rather billions of years.

But we want to understand Sun and its behavior more locally and on much shorter time
scales. On such time intervals and such local areas, that we could observe changes in Sun’s
atmosphere and call it Sun’s weather. Nowadays we know that the Sun as a whole has
approximately eleven years long period of activity variance. It means there are seasons of
a higher rate of sunspots, flares and massive mass ejections, and seasons of lower rates.

Observing those phenomena enables us to study its influence on Earth and also can help
us to predict those events in advance and determine the chances of having major impact on
humans living on Earth. For example, mass ejections may rapidly influence so-called solar
wind, which is a stream of high energy electrically charged particles coming out of the Sun.
In the case of strong enough ejection and right direction toward the Earth, the caused solar
wind of charged particles can make huge temporal changes in Earth’s magnetic field, leading
even to collapse of power grids. Being able to predict such events with certain precision
ahead, we could simply power off endangered systems to prevent damages.

In fact, the Sun is monitored not only from Earth, but mainly from space by probes.
We will focus on Solar Dynamics Observatory (SDO) and its Atmospheric Imaging Assembly
(AIA) aboard. AIA takes images in very narrow bands of spectra, focusing on different parts
of Sun’s atmosphere. Two wavelengths are relevant for us, the 1 600 Å and 1 700 Å. On both
of them, there is imprinted the overall continuum of the Sun radiation with similar intensity
rates, as both wavelengths are relatively close to each other. In 1 600 Å images, there is
also information involved about the presence of three times ionized carbon C IV, which
emerges exclusively during ongoing Sun eruptions. Combining images of both wavelengths
captured in the same time, we can extract the information about C IV layout in space and
get a specific way of visualizing eruptions.

For those purposes, we will have to register a couple of images. The suitable phase
correlation method and required mathematical theory, already studied and described from
the theoretical point of view in my bachelor’s thesis [20], will be reviewed and extended.
We will also study and describe the used image format Flexible Image Transport System
(FITS) and see, whether we can use stored metadata for image processing somehow. We
will also focus on well-known image interpolation methods, their suitability and effects on
final results.

A further step, combining images requires compensating the slight difference in con-
tinuum first. A suitable function has to be found and applied on one of the images before
combination. The thesis will also focus on studying the eventual evolution of such a function
in time.

The images of the Sun capture very contrasting areas and require further adjustment for
human eye. Therefore we will also have to focus on histogram modifications. Finally, we can
make a time sequence of corresponding image couples and create a video capturing carbon
C IV emission during an eruption.
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For the possibility of easy generation of images and videos of carbon C IV, a software
(graphical user interface respectively) with relevant parameters will be designed and created.
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1 Astronomical background
1.1 Sun
This section serves as a brief overview of Sun’s parameters and is a summarization of infor-
mation listed in [15], [19] and [26]. The Sun is a G-type star of main-sequence. The radius
of the Sun is approximately 695 thousand kilometers, which is more than one hundred times
bigger than the radius of Earth. Sun is rotating around its axis, but as its surface is not solid,
the rotation period varies according to distance from Sun’s equator. The shortest period of
about 25 days is on the equator and in direction to poles, the speed decreases and the period
gets up to 34 days [15].

The Sun’s interior composes of individual layers, called in order as the core, radiative zone
and convective zone depicted in the figure 1.1. The temperature of Sun’s core is estimated
to be 15 million Kelvins, decreasing towards the surface. In the interior, the thermonuclear
reaction takes place and produces radiation, which is slowly converging by reemissions to
the surface.

Figure 1.1: Sun’s structure ([28]).

We distinguish three main layers of Sun’s atmosphere called the photosphere, chromo-
sphere and solar corona which we will now describe in more details.
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1.1.1 Photosphere
By photosphere we call roughly 400 kilometers thick upper layer of the convective zone,
where Sun becomes opaque, i.e. it is the deepest layer, we can observe. The photosphere is
also layer up to which we measure the Sun’s radius. The temperature here attains between
4 500 and 6 000 Kelvins. ”The structure of photosphere, called granulation, resembles grains
of rice spilled on a dark tablecloth or a pot of boiling oatmeal.” [19] as can be seen in
the figure 1.2. The granules have typically 700 to 1 000 kilometers in diameter. On granule’s
surface, the matter is rising while falling down again into the interior on its edges. Because
of the temperature, the density is quite small - about one thousandth of Earth’s atmosphere
density at sea level, whilst the pressure is one tenth of that one on Earth.

Figure 1.2: Granulation pattern ([19]).

1.1.2 Chromosphere
An another layer above is chromosphere, which is difficult to observe due to the fact, that
it is transparent to most of the visible radiation from the photosphere and on its own emits
very little amount of light. For a long time, it was possible to observe the chromosphere
only during the solar eclipse. It is about 2 000 to 3 000 kilometers thick and its spectrum
contains most of Sun’s bright emission lines caused by hot excited gases which emits light
at discrete wavelengths. The average temperature is 10 000 Kelvins.

1.1.3 Transition region
The region between the chromosphere and solar corona is called transition region. Here,
the magnetic force starts to dominate over gravity. It is only a few tens of kilometers
wide but the temperature rises with the distance very rapidly to about million Kelvins (see
the figure 1.3). Spectral lines of transition region are mostly absorption ones. The transition
region is one of the least understood part of Sun’s atmosphere, as it is difficult to simulate
conditions there.

1.1.4 Solar corona
The upper layer of Sun’s atmosphere is solar corona consisting of very hot gases escaping
from Sun’s photosphere. It is approximately two times brighter than the full moon and
the shape is very irregular. It may be millions of kilometers wide to outer space but there

16



are also regions where there is almost no solar corona observed, such as region called coronal
hole on the south pole. The temperature is from 1 to 6 million Kelvins but the matter is
very sparse. In the certain distance, the density becomes so low, that the probability of one
particle hitting another is extremely small and therefore they become a sort of ”frozen” in
their excited state.

1.1.5 Sunspots and solar flares
Sun’s surface consists of electrically charged gases constantly changing their position. They
are generating huge magnetic forces forming the Sun’s magnetic field. The rate of changes
in the magnetic field varies over approximately eleven years long period of solar activity.

Sunspots are cooler parts of Sun’s surface with the very strong local magnetic field not
allowing some of the heat from Sun to reach that particular surface region. The higher
number of sunspots in principal means higher Sun activity.

The magnetic field near sunspots is often complicated and changes over time contin-
uously. From time to time, the induction lines cross each other and so-called magnetic
field reorganization may occur, i.e. some of the magnetic induction lines merge, simplifying
the magnetic field and decreasing its energy. Redundant energy is often released in a form of
intense radiation to outer space called a solar flare. Occasionally, when the magnetic reorga-
nization is large or sudden, solar flares can be accompanied by huge bubbles of radiation and
particles exploding into space at hight speed. This effect is called a coronal mass ejection.

Figure 1.3: Temperature in the solar atmosphere ([19]).
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1.2 Solar Dynamics Observatory
The Solar Dynamics Observatory (SDO) is a space probe of NASA studying Sun’s activity.
SDO was launched in 2010 in order to catch sunspot and solar activity during its predicted
peak in 2013 as part of Sun’s 11-year cycle. The probe continuously records high-definition
views of the Sun’s atmosphere from a geosynchronous orbit, where an orbital period of
satellite matches the period of Earth’s rotation on its axis. The probe consists of several
instruments, namely Atmospheric Imaging Assembly (AIA), Helioseismic Magnetic Imager
(HMI) and Extreme Ultraviolet Experiment (EVE) as it is depicted in the figure 1.4.

Figure 1.4: Solar Dynamics Observatory and its instruments ([12]).

Detectors are equipped with several narrow-wavelength filters based on one or two types
of ions and their spectral emission lines. According to [10] each wavelength was chosen to
highlight a particular part of Sun’s atmosphere, from the solar surface to the upper reaches
of Sun’s corona and it is depicted in the table 1.1. Symbol Å denotes a unit of wavelength
called angstrom and it holds 1 Å = 10−10 m = 0.1 nm.

1.2.1 Virtual Solar Observatory
The Virtual Solar Observatory (VSO) is a tool providing access to most of NASA mission’s
data, such as images from space probes. Being able to specify for example time, instrument

18



Table 1.1: The primary ions observed by AIA ([18]).

Channel Primary ion(s) Region of atmosphere Char. log(T)

4500 Å continuum photosphere 3.7
1700 Å continuum temperature minimum, photosphere 3.7
304 Å He II chromosphere, transition region 4.7

1600 Å C IV + cont transition region, upper photosphere 5.0
171 Å Fe IX quiet corona, upper transition region 5.8
193 Å Fe XII, XXIV corona and hot flare plasma 6.2, 7.3
211 Å Fe XIV active-region corona 6.3
335 Å Fe XVI active-region corona 6.4
94 Å Fe XVIII flaring corona 6.8

131 Å Fe VIII, XXI transition region, flaring corona 5.6, 7.0

and spectral range, we are able to obtain only data we are interested in. Individual images
are stored in .fits format which is described further in chapter 2. The Virtual Solar
Observatory is accessible at https://sdac.virtualsolar.org/cgi/search.

In order to study the occurrence of three times ionized atoms of carbon C IV, we are
focusing on wavelengths 1 600 Å and 1 700 Å, both capturing Sun’s photosphere. The shorter
wavelength 1 600 Å captures continuum which is the visible part of Sun’s spectrum with a
temperature 5000 K and occurrence of carbon C IV with temperature around 10 000 K.
On the longer wavelength 1 700 Å, only the continuum is captured. Both wavelengths are
quite close to each other, hence the continuum should have similar representation in both of
them. Therefore by combining both images we should be able to separate information about
C IV particles. C IV is present in the upper photosphere and in the transition region, where
the temperature rapidly rises. It is produced largely during stronger solar flares and mass
coronal ejections. On both wavelength images are regularly taken each 24 seconds.
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2 Mathematical theory
2.1 Digital image
Definition 2.1 (Digital gray-scale image) Let R = {0, 1, ...,M − 1} × {0, 1, ..., N − 1},
M,N ∈ N and let W = {0, 1, ..., w − 1}, w ∈ N. The function

f : R → W

is called a digital gray-scale image or image [6], [20], M is called image width and N the image
height. Elements of R are called pixels, value of function f in pixel (x, y) is called the pixel
value. The natural number w determines the dynamic range. We say that the dynamic range
is n-bits image if w = 2n, where n ∈ N.

Definition 2.2 (Digital color image) A digital color image is a triple of digital gray-scale
images (r, g, b) which are called (in order) the red, green and blue color channel.

Remark 2.1 Digital image is a discrete function of two variables on a restricted area rep-
resented by a chart (or matrix) of function values.

Remark 2.2 In a visualisation of a grey-scale image, the black color corresponds to a min-
imum pixel value and white color to a maximum.

2.1.1 Flexible Image Transport System
Although being originally designed for transporting images on magnetic tape, the Flexible
Image Transport System (FITS) is nowadays standard format used in astronomy to store
and share data [9].

FITS is composed of tuples called Header/Data Units (HDUs). Every HDU clearly
comprise of the Header Unit followed by an optional Data Unit. Both of them are a multiple
of 2880 bytes long. If needed the rest of bytes up to a multiple is filled with blank values in
the Header and NULLs in data units respectively.

The first HDU called Primary HDU or Primary Array may contain 1 to 999 dimensional
array of integers or floating point numbers. If there are any other HDUs, we call them as
extensions. Nowadays there are three types of standard extensions:

• IMAGE - 0 to 999 dimensional array of pixels

• TABLE - data in ASCII format

• BINTABLE - data in binary representation

Each header is a sequence of 80 keyword records restricted to ASCII characters. Record
begins with 8 characters long keyword containing only uppercase English alphabet letters,
digits, hyphen and underscore character, usually continues by equal sign and numeric value
(integer, floating point number, complex number or pair of numbers), character string (en-
closed in single quotes), or a Boolean value (letter T or F).

Some relevant header records and their meaning are listed in the table 2.1. The image
pixels are indexed from 1, we have to take it into account, especially when using values
CRPIX1 and CRPIX2. The header ends with keyword END with a blank value.
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Table 2.1: Important FITS header records ([9], [27]).

Keyword Meaning

BITPIX number of bits per data pixel
NAXIS number of data axes
NAXIS1 length of data axis 1
NAXIS2 length of data axis 2
DATE date of data creation (UTC)
WAVELNTH wavelength of spectrum observed
DATAMIN minimum pixel value
DATAMAX maximum pixel value
DATAMED median of pixel values
DATAMEAN mean of pixel values
CRPIX1 location of reference point on axis 1
CRPIX2 location of reference point on axis 2
CROTA2 bulk rotation of image plane
R_SUN radius of Sun in pixels

2.2 Image interpolation methods
Several methods for interpolation of pixel values during the application of image transforma-
tion will be introduced now. In the end, we compare all mentioned methods in the sense of
computational cost and quality of output image. All methods search for transformed image
pixels in the domain image and get the value of result pixels using corresponding weight
function often called convolution kernel, denoted by h. We will use discrete convolution to
compute transformed image pixel values (see definition 2.18). As all the kernel functions h
are usually rotationally symmetric, we will prescribe them and illustrate their principle on
functions of single variable x.

In order to be suitable for interpolation, the kernel must satisfy the following conditions:

1. h(0) = 1.

2. h(x) = 0 for |x| = 1, 2, ...

3. For any displacement d, such that 0 ≤ d < 1, the sum of h of all value x ∈ Z is equal
to 1, i.e. ∑

x∈Z

h(x+ d) = 1.

In other words, the kernel function has to be designed in such a way, that represents
a weight function for lattice of image pixels regardless of the reference position x0 with
respect to the lattice.

Also by δ we denote the size of the neighbourhood, which is taken into account in
particular interpolation method kernel, giving us notation of kernel function as hδ(x).
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2.2.1 Nearest neighbour
The easiest and most intuitive method called nearest neighbour simply takes each pixel of
transformed image and looks for its representative position in the domain. As the domain
is also a discrete set of pixels, it chooses the closest pixel and copies its value.

h1(x) =

{
1 if 0 ≤ |x| < 0.5,

0 otherwise.
(2.1)

Figure 2.1: Nearest neighbour interpolation kernel.

This process often results in a spatial offset error getting up to 1√
2

pixel units, accom-
panied by strong aliasing and blurring. For obvious reasons, the procedure is not suitable
for images designed for further study. The nearest neighbour method still takes place in
situations, when a fast transformation is required regardless of the quality losses, such as
magnifier tools. But we will no longer take this method into account.

2.2.2 Bilinear interpolation
Bilinear interpolation consists of two sequential linear interpolations. When choosing kernel
of size δ = 2, for each resulting pixel, four pixels surrounding the reference domain positions
are selected. For each pair of pixels, an interpolated value is computed according to a distance
on the selected axis. Finally the linear value of those two interpolated values is computed
according to a distance on the other axis.

Even though both interpolations are linear, the reconstructed surface surrounded by
those four pixels obtained by bilinear interpolation is generally nonlinear.

h2(x) =

{
1− |x| if 0 ≤ |x| < 1,

0 otherwise.
(2.2)
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Figure 2.2: Linear interpolation kernel.

In comparison with the nearest neighbour, the bilinear interpolation has much weaker
aliasing effect, but low frequencies are still aliased. In addition, the higher frequencies are
being attenuated, which results in lower image contrast.

2.2.3 Biquadratic interpolation
Biquadratic interpolation takes into account more surrounding pixels and interpolates them
by parabolic function.

Figure 2.3: Quadratic interpolation kernel with parameter a = 1.

23



h3(x) =


−2ax2 + 1

2
(a+ 1) if 0 ≤ |x| < 1

2
,

ax2 - (2a+ 1
2
)|x| + 3

4
(a+ 1) if 1

2
≤ |x| < 3

2
,

0 otherwise.
(2.3)

Biquadratic interpolation also attenuates high spatial frequencies [17].

2.2.4 Bicubic interpolation
Bicubic polynomials are widely used thanks to their ability to fit C2 continuous functions.
We will focus on kernels of size δ ∈ {4, 6, 8}. Their equations are given below.

Bicubic interpolation with kernel of size δ = 4 has one degree of freedom given in
the parameter a. According to [17], several values were found to be convenient, for ex-
ample a = −1.3 or a = −0.5. Given a = −0.5, the bicubic interpolation can reconstruct
an arbitrary second degree polynomial. It was derived to be an optimal value of a for image
independent case.

h4(x) =


(a+ 2)|x|3 −(a+ 3)x2 +1 if 0 ≤ |x| < 1,
a|x|3 −5ax2 +8a|x| −4a if 1 ≤ |x| < 2,

0 otherwise.
(2.4)

h6(x) =



6
5
|x|3 −11

5
x2 +1 if 0 ≤ |x| < 1,

−3
5
|x|3 +16

5
x2 −27

5
|x| +14

5
if 1 ≤ |x| < 2,

1
5
|x|3 −8

5
x2 +21

5
|x| −18

5
if 2 ≤ |x| < 3,

0 otherwise.

(2.5)

h8(x) =



67
56
|x|3 −123

56
x2 +1 if 0 ≤ |x| < 1,

−33
56
|x|3 +177

56
x2 −75

14
|x| +39

14
if 1 ≤ |x| < 2,

9
56
|x|3 −75

56
x2 +51

14
|x| −45

14
if 2 ≤ |x| < 3,

− 3
56
|x|3 +33

56
x2 −15

7
|x| +18

7
if 3 ≤ |x| < 4,

0 otherwise.

(2.6)

2.3 Histogram modification
Usually, when observing the image histogram, we might come to a decision, that a certain
histogram transformation is needed. For example, when SDO takes images of the Sun
on wavelength 1 600 Å during an intensive solar flare, most of the image pixel values are
going to be very low, considering the provided dynamic range. Only a few pixels capturing
the Sun’s part with solar flare are going to be very high and close to the top of dynamic
range. The resulting image is therefore very contrast from the point of view of comparing the
solar flare region and the rest of the Sun. But solar flare takes only a fraction of an image.
The rest of the Sun will be very monotonous and low contrast. This can be fixed by suitable
histogram modification.

We will introduce two basic examples of histogram modification with a global approach.
With respect to the histogram of an image, suitable parameters of transforming function
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(a) (b)

(c) (d)

Figure 2.4: Cubic kernel functions.
(a) Cubic kernel h4 with parameter a = −0.5.
(b) Cubic kernel h4 with parameter a = −1.3.

(c) Cubic kernel h6.
(d) Cubic kernel h8.

are derived. Then on every pixel in the image, exactly the same transformation function is
applied. Mostly we want to apply such a transformation when not all the dynamic range is
used or because the image is either too dark or bright. Therefore we search for minimum
pixel value a0 and maximum a1. Often quantiles Q0,01 and Q0,99 are used as values a0 and
a1 respectively.
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2.3.1 Linear transform
Definition 2.3 (Linear transform) Given the image f with minimum and maximum pixel
value a0 and a1 respectively, and original pixel value vin, the new pixel value vout after linear
transform is defined by

vout = b0 + (b1 − b0) ·
(
vin − a0
a1 − a0

)
,

where constants b0 and b1 respectively are minimum and maximum pixel values of output
image.

2.3.2 Gamma correction
Definition 2.4 (Gamma correction) Given the image f with minimum and maximum
pixel value a0 and a1 respectively, and original pixel value vin, the new pixel value vout after
gamma correction [5], [25] with parameter γ is defined by

vout = b0 + (b1 − b0) ·
(
vin − a0
a1 − a0

)γ−1

,

where constants b0 and b1 respectively are minimum and maximum pixel values of output
image.

Remark 2.3 The standard γ value for a PC computer display is γ = 2.2 [5].

2.3.3 Kappa Sigma Clipping
The Kappa Sigma Clipping method [7] is widely used for thresholding images mostly com-
posed of background pixels. For instance, given a set of images, we compute the median m
of all pixel values. Then the standard deviation σ of pixel values is calculated. We remove
all pixel values outside the interval 〈m− l · σ,m+ l · σ〉, where the constant l is usually sub-
stituted by number 2. Steps can be iterated multiple times. Finally, the mean or median of
remaining values is computed.

2.4 Fourier transform
We have been using spatial representation for describing images so far. Now we introduce an-
other approach, namely Fourier (or frequency) domain. Instead of using spatial coordinates
x and y, we express the image as a function of spatial frequencies ξ and η. An instrument
for the transition from spatial representation to frequency one is called Fourier transform.

2.4.1 2D Fourier transform
Firstly we need to determine the space of all admissible functions for which the Fourier
transform exists.

Definition 2.5 (L(R2)) Let L(R2) [8], [20] be the space of all functions R2 → C, such that∫∫
R2

|f(x, y)|dxdy
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exists and is finite.

Definition 2.6 (Fourier transform of functions in L(R2)) Let f ∈ L(R2). The Fourier
transform (FT) [1], [20] of function f is a function F{f} = F : R2 → C defined by

F (ξ, η) =

∞∫
−∞

∞∫
−∞

f(x, y)e−i(xξ+yη)dxdy.

Remark 2.4 The function F is also called the Fourier spectrum or Fourier image of the func-
tion f .

Definition 2.7 (Inverse Fourier transform of functions in L(R2)) Let G ∈ L(R2). The
inverse Fourier transform (IFT) [1], [20] of function G is a function F−1{G} = g : R2 → C
defined by

g(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

G(ξ, η)ei(xξ+yη)dxdy.

Remark 2.5 Fourier spectrum F is, in general, a complex function and includes both de-
pendences of intensity and initial phase on frequency.

Definition 2.8 (Amplitude and phase spectrum) Let f ∈ L(R2) and F be correspond-
ing Fourier spectrum. The function A : R2 → R+

0 defined by

A(ξ, η) = |F (ξ, η)| =
√

[Re (F (ξ, η))]2 + [Im (F (ξ, η))]2

is called amplitude spectrum [29], [8], [20] of function f and function Φ(ξ, η) : R2 → 〈0, 2π)
defined by

Re(F (ξ, η)) = A(ξ, η) cosΦ(ξ, η),
Im(F (ξ, η)) = A(ξ, η) sinΦ(ξ, η)

is called phase spectrum [8], [20] of function f .
If A(ξ, η) = 0, for some (ξ, η) we define Φ(ξ, η) = 0.

2.4.2 Discrete 2D Fourier transform
Definition 2.9 (Discrete Fourier transform) Let f be a function {0, 1, ..., N − 1} ×
{0, 1, ..., N − 1} = {0, 1, ..., N − 1}2 → C, N ∈ N. The discrete Fourier transform (DFT) [1]
of function f is a function D{f} = F : {0, 1, ..., N − 1}2 → C defined by

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη).

Definition 2.10 (Inverse discrete Fourier transform) Let f be a function {0, 1, ..., N − 1}2
→ C, N ∈ N and let F be its discrete Fourier transform. The inverse discrete Fourier trans-
form (IDFT) [1] of function F is a function D−1{F} = {0, 1, ..., N − 1}2 → C defined by

D−1{F}(x, y) = 1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).
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Considering an image of dimensions N×N , the number of operations of Discrete Fourier
transform is O(N2). More efficient algorithms were developed in order to reduce the number
of operations. For example Cooley-Tukey algorithm, which is recursively dividing DFT
problem to two smaller DFT problems, reaches O(N log2N) number of operations [13].

2.4.3 Properties of Fourier transform
Let us now remind some important properties of Fourier transform from [8]. There are
examples of image function transformation and its impact on Fourier image in the table 2.2
below. Introduced properties are formulated for continuous functions. However similar
analogous statements hold also for discrete functions.

Remark 2.6 Fourier image is uniquely determined by its spatial function (up to sets of
zero measure) [1] and vice versa. Therefore we can introduce a concept of Fourier pair in
following table.

Fourier pair f(x, y) F (ξ, η)

Translation f(x− x0, y − y0) F (ξ, η)e−i(ξx0+ηy0)

Scale change f(αx, αy) 1
α2F ( ξ

α
, η
α
)

Rotation f(x cos θ − y sin θ, x sin θ + y cos θ) F (ξ cos θ − η sin θ, ξ sin θ + η cos θ)

Table 2.2: Fundamental properties of Fourier transform.

Theorem 2.11 (Shift theorem) [8], [20] Let function f1 ∈ L(R2) and F1 be its Fourier
spectrum, further let us define function f2 by

f2(x, y) = f1(x− x0, y − y0),

where x0, y0 ∈ R are given constants. Let F2 be Fourier spectrum of function f2. Then

F2(ξ, η) = F1(ξ, η)e−i(ξx0+ηy0),

A2(ξ, η) = A1(ξ, η).
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Proof. The proof is taken from [8].

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f1(x− x0, y − y0)e−i(xξ+yη)dxdy =

=
s = x− x0 x = s+ x0 dx = ds
t = y − y0 y = t+ y0 dy = dt

=

=

∞∫
−∞

∞∫
−∞

f1(s, t)e−i[ξ(s+x0)+η(t+y0)]dsdt =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e−i(ξs+ξx0+ηt+ηy0)dxdy =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e−i(ξs+ηt)e−i(ξx0+ηy0)dsdt = F1(ξ, η)e−i(ξx0+ηy0).

Let A1, A2 be amplitude spectra of function f1, f2. Then

A2(ξ, η) = |F1(ξ, η)e−i(ξx0+ηy0)| = |F1(ξ, η)| · |e−i(ξx0+ηy0)| = A1(ξ, η) · 1 = A1(ξ, η).

Theorem 2.12 (Scale-change theorem) [8], [20] Let f1 ∈ L(R2) and let F1 be its Fourier
image, further let us define function f2 by

f2(x, y) = f1(αx, αy),

where α ∈ R+ is a given constant. Let F2 be the Fourier spectrum of function f2 and let
A1, A2 be amplitude spectra of functions f1, f2. Then

F2(ξ, η) =
1

α2
F1

(
ξ

α
,
η

α

)
,

A2(ξ, η) =
1

α2
A1

(
ξ

α
,
η

α

)
.

Proof. The proof is taken from [8].

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f2(x, y)e−i(xξ+yη)dxdy =

∞∫
−∞

∞∫
−∞

f1(αx, αy)e−i(xξ+yη)dxdy =

=
s = αx x = s

α
dx = ds

α

t = αy y = t
α

dy = dt
α

=

=
1

α2

∞∫
−∞

∞∫
−∞

f2(s, t)e−i( s
α
ξ+ t

α
η)dsdt = 1

α2
F1

(
ξ

α
,
η

α

)
,

A2(ξ, η) = |F2(ξ, η)| =
1

α2

∣∣∣∣F1

(
ξ

α
,
η

α

)∣∣∣∣ = 1

α2
A1

(
ξ

α
,
η

α

)
.
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Theorem 2.13 (Rotation theorem) [8], [20] Let f1 ∈ L(R2) and let F1 be its Fourier
image, further let us define function f2 by

f2(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ),

where θ ∈ 〈0, 2π) is a given constant. Let F2 be the Fourier spectrum of function f2 and let
A1, A2 be amplitude spectra of functions f1, f2. Then

F2(ξ, η) = F1(ξ cos θ − η sin θ, ξ sin θ + η cos θ),

A2(ξ, η) = A1(ξ cos θ − η sin θ, ξ sin θ + η cos θ).

Proof. The proof is taken from [8].

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f2(x, y)e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

f1(x cos θ − y sin θ, x sin θ + y cos θ)e−i(xξ+yη)dxdy =

=

∣∣∣∣∣ s = x cos θ − y sin θ x = s cos θ + t sin θ

t = x sin θ + y cos θ y = −s sin θ + t cos θ
J = det

(
cos θ sin θ

− sin θ cos θ

)∣∣∣∣∣
=

∣∣∣∣∣det

(
cos θ sin θ

− sin θ cos θ

)∣∣∣∣∣
∞∫

−∞

∞∫
−∞

f1(s, t)e−i[(s cos θ+t sin θ)ξ+(−s sin θ+t cos θ)η]dsdt =

= 1 ·
∞∫

−∞

∞∫
−∞

f1(s, t)e−i[s(ξ cos θ−η sin θ)+t(ξ sin θ+η cos θ)]dsdt =

= F1(ξ cos θ − η sin θ, ξ sin θ + η cos θ).

Theorem 2.14 (Similarity theorem) [8], [20] Let function f1 ∈ L(R2) and let F1 be its
Fourier spectrum, further let us define function f2 by

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ),

where θ ∈ 〈0, 2π), α ∈ R+ and x0, y0 ∈ R are given constants. Let function F2 be the Fourier
spectrum of function f2 and let functions A1, A2 be amplitude spectra of functions f1, f2.
Then

F2(ξ, η) =
1

α2
e−i(ξx0+ηy0)F1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
,

A2(ξ, η) =
1

α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.
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Proof. An idea of a proof is taken from [8], [20]. Let us suppose functions

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ − y0),

f3(x, y) = f1(αx cos θ − αy sin θ, αx sin θ + αy cos θ),
f4(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ).

Then by successive application of theorems 2.11, 2.12, 2.13 we obtain relations for Fourier
spectra of functions

F2(ξ, η) = F3(ξ, η)e−i(ξx0+ηy0) =

=
1

α2
F4

(
ξ

α
,
η

α

)
e−i(ξx0+ηy0) =

=
1

α2
e−i(ξx0+ηy0)F1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.

Analogously for amplitude spectra we obtain

A2(ξ, η) = A3(ξ, η) =

=
1

α2
A4

(
ξ

α
,
η

α

)
=

=
1

α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.

2.4.4 Convolution
Definition 2.15 (Convolution) Let functions f1, f2 ∈ L(R2). The convolution f1 ∗ f2 [1]
is a function defined by

f1(x, y) ∗ f2(x, y) =
∫∫
R2

f1(s, t)f2(x− s, y − t)dsdt.

Remark 2.7 The function f2 in the definition 2.15 is called convolution kernel or simply
kernel.

Intuitively convolution can be taken as a response of function f1 to convolution kernel f2
shifted by values x and y along axes. Convolution is often used for various image process-
ing methods, typically when calculating pixel values depending on neighbourhood pixels.
The kernel is mostly restricted to area according to size of the neighbourhood we wish to
consider. Outside the area, we define the kernel function f2 to be identically zero. The tech-
nique is used in the definition of image interpolation methods in section 2.2. Furthermore
let us mention some properties of convolution as well as its discrete version which can be
used later to compute phase correlation function.
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Theorem 2.16 [8] Let functions f1, f2 ∈ L(R2) and let F1, F2 be their corresponding Fourier
spectra. Then it holds

F{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

Remark 2.8 The proof of theorem 2.16 is stated in [1].

Theorem 2.17 [8] Let functions f1, f2 ∈ L(R2) and let F1, F2 be their corresponding Fourier
spectra. Furthermore let f1 and f2 be continuous functions. Then it holds

F{f1(x, y) · f2(x, y)} =
1

4π2
F1(ξ, η) ∗ F2(ξ, η).

Remark 2.9 The proof of theorem 2.17 is stated in [8].

Definition 2.18 (Discrete convolution) Let functions f1, f2 be functions {0, 1, ..., N − 1}2
→ C, N ∈ N. The discrete convolution f1 ∗ f2 [1] is a function defined by

f1(x, y) ∗ f2(x, y) =
N−1∑
s=0

N−1∑
t=0

f1(s, t)f2(x− s, y − t).

Theorem 2.19 [8] Let functions f1, f2 : {0, 1, ..., N − 1}2 → C, N ∈ N and let F1, F2 be
their corresponding Fourier spectra. Then it holds

D{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

Remark 2.10 The proof of theorem 2.19 is stated in [8].

Theorem 2.20 [8] Let functions f1, f2 : {0, 1, ..., N − 1}2 → C, N ∈ N and let F1, F2 be
their corresponding Fourier spectra. Then it holds

D{f1(x, y) · f2(x, y)} =
1

N2
F1(ξ, η) ∗ F2(ξ, η).

Remark 2.11 The proof of theorem 2.20 is stated in [8].

2.5 Correlation
Phase correlation is a handy tool for image registration. Initially was intended as a tool to de-
tect translation transform between two images, however using techniques such as logarithmic-
polar coordinates, we can reformulate the problem of scale and rotation transform to trans-
lation transform.

2.5.1 Complex conjugate functions
Firstly let us denote F ∗ to be a complex conjugate function to Fourier spectrum F . We
remind relations between complex conjugate function and its Fourier spectrum. Specific
relations hold when f is a real function. This condition satisfies every image, we will work
with.
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Theorem 2.21 [8] Let function f ∈ L(R2) and let F be its Fourier spectrum. The Fourier
spectrum of function f ∗ (complex conjugate to f) is a complex conjugate Fourier spectrum F ∗

to F with reversed axes, i.e. in every point where f be continuous it holds

F{f ∗(x, y)} = F ∗(−ξ,−η).

Proof. The proof is taken from [14].

F{f ∗(x, y)} =

∞∫
−∞

∞∫
−∞

f ∗(x, y)e−i(xξ+yη)dxdy =

∞∫
−∞

∞∫
−∞

f ∗(x, y)ei(−xξ−yη)dxdy =

=

( ∞∫
−∞

∞∫
−∞

f(x, y)e−i[x(−ξ)+y(−η)]dxdy

)∗

= F ∗(−ξ,−η),

because for a ∈ R is

eia = cos a+ i sin a,

e−ia = cos a+ i sin(−a) = cos a− i sin a.

Hence
eia =

(
e−ia)∗ .

Theorem 2.22 [8] Let f ∈ L(R2) and let F ∈ L(R2) be its Fourier spectrum. Let f be
continuous. Then the inverse Fourier transform of complex conjugate Fourier spectrum F ∗

to spectrum F is the complex conjugate function f ∗ to function f with reversed axes, i.e. in
every point where f is continuous it holds

F−1{F ∗(ξ, η)} = f ∗(−x,−y).

Proof. The proof is taken from [14].

F−1{F ∗(ξ, η)} =
1

4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)ei(ξx+ηy)dξdη =
1

4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)e−i(−ξx−ηy)dξdη =

=

 1

4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei[ξ(−x)+η(−y)]dξdη

∗

= f ∗(−x,−y).

Theorem 2.23 [8] Let f ∈ L(R2) and let F ∈ L(R2) be its Fourier spectrum. Let f be
continuous function. f is a real function, i.e.

f(x, y) = f ∗(x, y), ∀(x, y) ∈ R2,

if and only if
F (ξ, η) = F ∗(−ξ,−η).
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Proof. The proof is taken from [14].

(a) Let f be a real function. Then from theorem 2.21 it follows

F (ξ, η) = F {f(x, y)} = F {f ∗(x, y)} = F ∗(−ξ,−η).

(b) Let F (ξ, η) = F ∗(−ξ,−η). Then from theorem 2.22 it follows

f(x, y) = F−1 {F (ξ, η)} = F−1 {F ∗(−ξ,−η)} = f ∗(x, y).

Corollary 2.24 [8] Let f ∈ L(R2) be a real function and let F be its Fourier spectrum.
Then

A(ξ, η) = A(−ξ,−η).

Proof. This statement is a consequence of theorem 2.21.

Corollary 2.25 [8] Let f ∈ L(R2) be a real continuous function and let F ∈ L(R2) be its
Fourier spectrum. Further let G : R2 → R be a bounded real valued function, such that

G(ξ, η) = G(−ξ,−η).

Then F−1 {F (ξ, η) ·G(ξ, η)} is a real function.

Proof. The proof is taken from [8].
According to theorem 2.23, if f is a real function, then

F (ξ, η) = F ∗(−ξ,−η).

Multiplying the equality by G, we obtain

F (ξ, η) ·G(ξ, η) = F ∗(−ξ,−η) ·G(−ξ,−η) = (F (−ξ,−η) ·G(−ξ,−η))∗.

Since G is bounded, the existence of an inverse Fourier transform is ensured. Then again
according to theorem 2.23

F (ξ, η) = F ∗(−ξ,−η)

is a real function.

2.5.2 Phase correlation function
Definition 2.26 (Phase correlation function) Let functions f1, f2 ∈ L(R2) have corre-
sponding Fourier spectra F1, F2. Phase correlation function [8] is a function Pf1,f2 : R2 → C
defined by

Pf1,f2(x, y) = F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)

|F1(ξ, η) · F2(ξ, η)|

}
.
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Theorem 2.27 (Phase correlation function of shifted functions) [8] Let functions
f1 ∈ L(R2) and let F1 be its Fourier spectrum. Let us consider function f2 such that

f2(x, y) = f1(x− x0, y − y0),

where x0, y0 ∈ R are given numbers. Let F2 be the Fourier spectrum of function f2. Then
the phase correlation function of functions f1, f2 is the Dirac δ-distribution function shifted
by (−x0,−y0), hence

Pf1,f2(x, y) = δ(x+ x0, y + y0).

Proof. The idea of the proof is taken from [8]. According to theorem 2.11 (Shift theorem)
the following equality holds

Pf1,f2(x, y) = F−1

{
F1(ξ, η) · F ∗

1 (ξ, η)(e−i(ξx0+ηy0))∗

|F1(ξ, η) · F1(ξ, η)(e−i(ξx0+ηy0))|

}
= F−1

{
ei(ξx0+ηy0)

}
.

According to [8] is the Dirac δ-distribution function shifted by (x0, y0) equal to

δ(x− x0, y − y0) = F−1
{

e−i(ξx0+ηy0)
}
.

Therefore

Pf1,f2(x, y) = F−1
{

ei(ξx0+ηy0)
}
= F−1

{
e−iξ(−x0)−iη(−y0)

}
= δ(x+ x0, y + y0).

Fourier spectra involved in the definition 2.26 may attain zero value in certain points.
In this case the denominator is equal to zero and the fraction itself would not be defined.
Therefore in order to ensure, that our fraction will remain in bounds of our assumptions
for functions suitable for Fourier and inverse Fourier transform, we will slightly change
the denominator and introduce the concept of a semi-phase correlation function.

Definition 2.28 (Semi-phase correlation function) [8] Let functions f1, f2 ∈ L(R2) have
their corresponding Fourier spectra F1, F2. Further let p, q ∈ R+ be arbitrary positive fixed
numbers. Semi-phase correlation function is a function P p,q

f1,f2
: R2 → C defined by

P p,q
f1,f2

(x, y) = F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)

(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

}
.

Theorem 2.29 Let f1, f2 ∈ L(R2) be real function with corresponding Fourier spectra F1, F2

and amplitude spectra A1, A2. Further let us fix numbers p, q ∈ R+. Then the semi-phase
correlation function [8]

P p,q
f1,f2

(x, y) = F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)

(|A1(ξ, η)|+ p) · (|A2(ξ, η)|+ q)

}
.

of functions f1, f2 with parameters p, q is a real function.
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The proof of theorem 2.29 is listed in [8]. It uses corollaries of theorems 2.24, 2.25 and
properties of convolution.

According to previous theorems and definitions in the case of two shifted real functions f1
and f2, the phase correlation function should have the form of Dirac δ-distribution function
shifted by (x0, y0). In a case of real images with consideration of different illumination
and noise influence, the function will contain more local maxima. Nevertheless the phase
correlation method is quite robust and therefore we can still stick to searching for a global
maximum of a function as the value of other local ones will be nowhere near the value of
the global one. The position of maximum (x0, y0) corresponds to the shift vector between
our considered images.

The uncertainty may occur in cases of images not suitable for phase correlations, such as

• images of periodic structures,

• images where the noise representation outbalances signal information.

2.5.3 Sub-pixel precision phase-correlation
The position (x0, y0) of the maximum of phase correlation function (semi-phase correlation
function respectively) determines the shift vector between inspected images f1 and f2. This
is an integer solution. We would like to get closer to real shift vector with sub-pixel ac-
curacy. The inaccuracy caused by integer rounding can cause large errors, especially when
determining scale and rotation changes. One of the simplest ways to get a better estimation
of real shift vector is to use geometric moments to calculate weighted centroid of pixels in
the neighbourhood of the found maximum.

The idea is that the peak of phase correlation function takes not only single pixel but
whole neighbourhood of pixels. The defocus of the peak depends largely on selected param-
eters of low-pass high-pass weight function (see subsection 2.6.2) used for computing phase
correlation function (how much we attenuate high frequencies).

Definition 2.30 (Geometric moment) Let (x0, y0) be a given point and r the given radius.
Then the geometric moment of order k,l [16] is given by following formula

Mk,l =
∑∑
x2+y2<r

xkylP p,q
f1,f2

(x0 + x, y0 + y), k, l ∈ N,

where, P p,q
f1,f2

is the semi-phase correlation function (see the definition 2.28).

Remark 2.12 The geometric moment M0,0 is the overall intensity of the image (respectively
of selected neighbourhood).

Definition 2.31 (Weighted centroid) The weighted centroid or center of mass is defined as

(x1, y1) =

(
M1,0

M0,0

,
M0,1

M0,0

)
.
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2.5.4 Polar coordinates
From phase correlation function we are able to determine translation transform between two
images. With slight reformulation, we can use the same concept also for detecting image scale
and rotation changes. For example using well-known transformation to polar coordinates,
the initial image rotation transform will become a problem of translation on angle axis ϕ.

Definition 2.32 (Transformation to polar coordinates) Let f : R2 → C. Let
us denote fp : 〈0,∞) × 〈0, 2π) → C(%, ϕ) the transformation to polar coordinates %, ϕ of
function f [8] such that % satisfies

% =
√
x2 + y2

and ϕ is the solution to
x = % cosϕ,

y = % sinϕ.

2.5.5 Logarithmic-polar coordinates
Similarly, we can introduce a suitable transform, which displays not only rotation but also
scale change as translation on single axis.

Definition 2.33 (Transformation to logarithmic-polar coordinates) Let f : R2 → C.
The function f lp : R × 〈0, 2π) → C(%, ϕ) is called the transformation to logarithmic-polar
coordinates of function f [8] if % satisfies

e% =
√

x2 + y2,

and ϕ is the solution to
x = e% cosϕ,

y = e% sinϕ.

If the mutual transformation between couple of images includes all translation, rotation
and scale changes, we have to separate the problem of translation transform from others,
otherwise the transformation to logarithmic-polar coordinates will not be applicable.

Therefore instead of using original images, we will transform to logarithmic-polar co-
ordinates their amplitude spectra. We know that translation transform does not change
the amplitude spectrum thanks to the theorem 2.11 (Shift theorem). Hence, firstly we in-
vestigate rotation and scale changes using amplitude spectra and than we can return to
the remaining translation transform.

However we have to be aware also of the corollary 2.24 which states

A(ξ, η) = A(−ξ,−η),

causing the angle axis to be only π and not 2π periodic. We have to be aware of this
restriction while evaluating the angle of rotation change from phase correlation function. If
we get the angle θ from phase correlation function, we know the actual transform will be
either θ or θ+π. We can consider both changes, redo the rotation and compare both images
with the reference image by using phase correlation function again. The proper angle is than
determined by greater from both phase correlation functions maximum values.
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2.6 Weight functions

2.6.1 Window function
Let us remind the idea of Fourier transform. Basically it decomposes the signal (our image)
into a set of periodic trigonometric functions. Let our image of dimensions [M,N ] be de-
scribed by function f . In that case, f is discrete function, which is identically equal to zero
except the rectangular region 〈0,M − 1〉 × 〈0, N − 1〉. But the (2D) Fourier transform is
much more suitable (and simpler) when describing periodic functions on R2 [11]. Therefore
it is convenient to extend f to a periodic function f̃ as follows

f̃(x, y) = f(x mod M, y mod N), where x, y ∈ Z.

Fourier transform is very sensitive to rapid changes of function values. In general f̃ will
have lines of discontinuities pM and qN , where p, q ∈ Z which could have a dramatic
impact on the Fourier transform representation and possible change the location of phase
correlation function’s maximum leading us to wrong image registration results. Hence a little
modification of f is in place before the extension to f̃ , namely multiplication by so-called
window function. The window function preserves values of f around the image center and
smoothly diminishes the edge-surrounding pixel values.

Clearly application of window function may also lead to the exclusion of important sig-
nificant structures around image edges that would help to highlight the maximum of phase
correlation function. It is therefore a matter of optimization and finding the balance between
small discontinuities and the least amount of lost image information. That may differ a lot
according to the type of images we are dealing with.

With respect to our large, rather monotonous images containing no significant structures,
it should not matter a lot on the type of window function chosen. Let us introduce only two
of such functions.

Definition 2.34 (Window functions) Let sets

A = 〈−a, a〉 × 〈−b, b〉, a, b ∈ R+
0 ,

B = {(x, y); x2 + y2 ≤ r2}, r ∈ R+
0 .

Let σ ∈ R+ be a given number. Let %(X,A) be the distance of point X = (x, y) from
the set A defined by

%(X,A) = inf{d ∈ R+, d = %(X,Y ), Y ∈ A},

where %(X, Y ) is the Euclidean metric. Then

1. The function
gGR(x, y) = e(−

%2(X,A)

σ2 )

is called the rectangular Gaussian window function [8].

2. The function
gGC(x, y) = e−

−%2(X,B)

σ2

is called the circular Gaussian window function [8].
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3. The function

gHR(x, y) =

{
1
2
+ 1

2
cos π%(X,A)

σ
if %(X,A) ≤ σ,

0 if %(X,A) > σ,

is called the rectangular Hanning window function [8].

4. The function

gHC(x, y) =

{
1
2
+ 1

2
cos π%(X,B)

σ
if %(X,B) ≤ σ,

0 if %(X,B) > σ,

is called the circular Hanning window function [8].

Rectangular window function retains more image information and it computationally
faster than the circular one, but does not diminish totally on the edges. Similarly, Gaussian
window function will never be zero on edges, but can be negligible by choosing a proper
value of σ.

(a) (b)

Figure 2.5: Application of circular Hanning window function ([20]).
(a) Original image.

(b) Image multiplied by circular Hanning window function.

2.6.2 Low-pass high-pass weight function
In the case of registering real images, noise influence has to be considered. Both additive
and impulsive noise are involved. From a Fourier spectrum point of view the noise is present
on each spatial frequency but generally its significance increases as the frequency rises. This
makes higher frequencies less reliable for proper image registration. We would like to suppress
its influence (amplitude) by an appropriate weighted function but again we have to search
for a balance. By repressing them we are also reducing the potential accuracy of image
registration as the highest frequencies contain information about the smallest structures.

Moreover the lowest spatial frequencies are problematic too. The zero frequency rep-
resents the average pixel value and other low frequencies contain information about large
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image structures such as diffuse light in the optical system and vignetting. Furthermore they
are sensitive to different contrast and brightness of an image.

Due to the facts mentioned above, the overall shape of the required weighted function of
spatial frequencies is quite limited and we can define it as follows in the definition below.

Definition 2.35 (Low-pass high-pass weight function) Let r1, r2, σ1, σ2 ∈ R+ such that
r1 < r2. The function Hr1,σ1(ξ, η) : R2 → 〈0, 1〉 defined as

Hr1,σ1(ξ, η) =


0 if 4

N2 (ξ
2 + η2) < (r1 − σ1)

2,

1
2
+ 1

2
cos π(r1− 2

N

√
ξ2+η2)

σ1
if (r1 − σ1)

2 ≤ 4
N2 (ξ

2 + η2) < r21,

1 else,

is called the high-pass weight function [8]. The function Hr2,σ2(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2(ξ, η) =


1 if 4

N2 (ξ
2 + η2) < r22,

1
2
+ 1

2
cos π(r2− 2

N

√
ξ2+η2)

σ2
if r22 ≤ 4

N2 (ξ
2 + η2) < (r2 + σ2)

2,

0 else,

is called the low-pass weight function [8]. The function Hr2,σ2
r1,σ1

(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2
r1,σ1

(ξ, η) = Hr1,σ1(ξ, η) ·Hr2,σ2(ξ, η)

is called the low-pass high-pass weight function [8].
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3 Implementation
Now after summarization of required context and mathematical theory we are ready

to design and implement an algorithm able to process a couple of images from distinct
wavelengths and combine them into a single image in order to receive information about
C IV spatial distribution. For the purpose of visualization of distribution in time, a time
sequence of images is created resulting in a video.

3.1 Algorithm
The proposed algorithm consists of the following steps:

• Downloading a sequence of images in selected time interval on both 1 600 Å and 1 700 Å
wavelengths.

• Removing calibration images.

• Sorting 1 600 Å images by time.

• Finding the closest 1 700 Å image for each 1 600 Å image.

• Registering of each corresponding image couple.

• Computing multiplicative function.

• Merging images into a single color image.

• Applying histogram modification.

• Creating a video of merged images.

In the following subsections, we will describe each step in further details.

3.1.1 FITS files download
As was already mentioned in subsection 1.2.1, we can filter our required images on VSO web
page [22]. It will give us a list of urls corresponding to each FITS file. This list is exportable
to .csv file. We can easily rename the file to text file .txt and use curl to download all
FITS files through url list in a text file. In our case the curl for Windows 7.66.0 was used
[4].

3.1.2 Image preprocessing
FITS files downloaded from VSO have been already preprocessed. According to [24], follow-
ing operations were applied:

• overscan pixel removal,

• dark pedestal, dark current and flat field corrections,

• bad pixel and cosmic-ray spikes removal,
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• image rescaled to integer,

• image flipped to match Solar North pole.

We have to keep in mind, that some of those calibration images may be present in our
downloaded FITS files and eliminate them. For example, dark frames, used for correcting
zero pixel intensity level can be detected by computing arithmetic mean of image pixel values
which will be much smaller in comparison with a regular image (usually lower than 1) or
simply checking the header keyword IMG_TYPE.

If it is a regular image then the keyword has value LIGHT otherwise DARK in the case of
dark frame image.

3.1.3 Image registration
Image registration can be done by phase correlation method mentioned in section 2.5 to
find scale, rotation and translation parameters of mutual image transformation. Thanks to
the FITS header information of SDO images, we can achieve the image couple registration
much faster. Each FITS image has in header a keyword R_SUN followed by float number
representing Sun’s radius in pixels. Therefore the ratio of those values of the first and
second image gives us the scale change parameter. Similarly the keyword CROTA2 represents
an angle to reference image axes. The difference between both images values gives us mutual
rotation transformation angle. And lastly, the translation parameters can be obtained from
keywords CRPIX1 and CRPIX2 being the Sun disk center location in pixel (assuming pixel
numbering starts from 1).

After obtaining all three parameters we have to choose an appropriate interpolation
method used when applying the transformation. The nearest neighbour is the fastest one, but
at the same time very inaccurate. The bilinear interpolation blurs the edges and decreases
the dynamic range of an image (more details and demonstrative images are stated in [21]).
But it preserves the total intensity of an image, which is important for us as we want to fit
two images together. Biquadratic and bicubic interpolation better preserve the sharpness
of edges but changes more the original information, which leads to worse results in later
merging step of two images. Strange artifacts arise in the resulting composed image (see
section 3.3). Besides, the required computational time is greatly increased.

3.1.4 Multiplicative function computation
Ignoring the discrete set of emitting and absorbing frequencies, the Sun can be seen as
a black body with surface temperature 5800 Kelvins as it is depicted in the figure 3.1. Each
couple of images represents a signal from the Sun in a narrow band pass. Both wavelengths
1 600 Å and 1 700 Å contributes very little proportionally to radiation intensity of the Sun
on other wavelengths. Also, despite being relatively close to each other, the radiation on
the shorter wavelength is significantly weaker. The exposure time of 1 600 Å images is fixed
at 2.9 seconds, while 1 700 Å images at 1 second. Still, the intensity of 1 700 Å images is
roughly five times higher.

Therefore before combining images from both wavelengths together, a multiplication of
one of the image pixels’ values by an appropriate constant is required. Moreover this constant
may vary with respect to the radius from the Sun disk center in a picture. With increasing
radius, we are looking at the Sun at different angles. This causes the radiation from lower
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Figure 3.1: Spectrum of the radiation outside the Earth’s atmosphere compared to
the spectrum of a 5800 K blackbody ([23]).

Sun’s atmosphere layers to travel through thicker and thicker upper layers. The permeability
of those layers differs for 1 600 Å and 1 700 Å wavelengths. Hence instead of constant, we
shall look for a multiplicative function depending on that radius.

To achieve the lowest calculation errors possible, we designed the multiplicative function
in such a way, that pixel values of 1 600 Å image multiplied by our multiplicative function
fits 1 700 Å image pixel values. Since 1 600 Å images have lower absolute pixel intensities,
the multiplicative function will attain values greater or equal to one and relative rounding
error of multiplied pixel values to integer will be smaller in comparison with the case when
we would compute the inverse function and apply it on 1 700 Å image pixel values.

Registered images are divided into annuli with a constant difference of outer and inner
radius. On each of the annulus pixels, a sort of Kappa Sigma clipping method is applied to
remove statistically very distinct pixel values. Rather than computing mean, we use it to
get better representative median. Next, the ratio of medians from both images is computed
for corresponding annuli, giving us the multiplicative function. Lastly, the 1 600 Å image is
multiplied by computed multiplicative function, while the exact multiple is obtained by linear
interpolation between two closest annuli ratios with respect to the distance from the Sun
disk center.

Further study of suitable multiplicative function is discussed in section 3.2.

3.1.5 Image merging
The basic idea is to take two images with corresponding intensities (corrected by multiplica-
tive function) and assign its pixel values to different color channels. As we are working with
red-green-blue color system (RGB), we assign one image to one channel and the second one
to the remaining two channels. The result should be a gray-scale image with highlighted
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colorful areas containing carbon C IV while the color is affected by selected channel combina-
tion. We assigned the 1 700 Å image to the green channel and 1 600 Å image (which includes
records of carbon C IV) to the red and blue channel. Therefore all the areas containing
carbon C IV will be highlighted with magenta color.

3.1.6 Histogram modification
Our images of the Sun have very large dynamic range, namely 15 bits per pixel are used.
Pixels can therefore attain values from −16383 to 16383.

Histograms of both wavelengths images have a monomodal character for most of the time.
As an example, in the figure 3.2, there are histograms of images just before a great eruption
occurred on October 24, 2014. The peak is located very close to the zero value intensity
and represents the Sun disk pixels. If a larger eruption occurs in the image, the histogram
becomes bimodal as can be seen in the figure 3.3. The second peak is caused by pixels
visualizing the eruption and is located very close to the maximum value of the dynamic
range (the blooming effect is present). Therefore most of the image is relatively very dark
with just small bright part capturing the eruption. Histograms depicted in the figures 3.2
and 3.3 consist of 100 bins and negative pixel values are counted as zeros.

(a)

(b)

Figure 3.2: Histogram of images before an eruption on October 24, 2014.
(a) Histogram of 1 600 Å image.
(b) Histogram of 1 700 Å image.
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(a)

(b)

Figure 3.3: Histogram of images of an ongoing eruption on October 24, 2014.
(a) Histogram of 1 600 Å image.
(b) Histogram of 1 700 Å image.

A suitable histogram transformation can be applied to make the image better from
a human vision point of view. Standardly used method is gamma transformation (introduced
in subsection 2.3.2) with parameter γ = 2.2. This brings some more light in the image.

In the figure 3.4, there is visible a change in the histogram of 1 700 Å image according to
used interpolation type for image transformation. The bilinear interpolation does not change
the shape of histogram much, whereas biquadratic decreases the pixel value and bicubic does
so even more. This could potentially help to visualize images, but on the other hand we are
changing the original information quite too much and some unwanted artifacts can arise as
described in section 3.3. According to the chosen interpolation method, the multiplicative
function may vary a bit. As the histogram remains almost the same when using bilinear
interpolation, the change of a multiplicative function with respect to the original images will
be negligible.

3.1.7 Used libraries
The algorithm was implemented in C# programming language using Microsoft Visual
Studio. Following 3rd party packages were used:

• CSharpFITS,
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(a)

(b)

(c)

Figure 3.4: Comparison of histogram of 1 700 Å image before and after transformation.
(a) Bilinear interpolation.

(b) Biquadratic interpolation with parameter a = 1.
(b) Bicubic interpolation with kernel of size 6.

• SharpAvi.

The package CSharpFITS [3] enables simple access to FITS files headers and data units.
The package SharpAvi [2] helps to create videos of resulting image sequences.

Charts were generated using Matlab.
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3.2 Multiplicative function results
In the beginning, the figure 3.5 shows inapplicability of constant function multiplication,
where the constant is given by the ratio of image medians of pixel values. The resulting
image has green shades in disk center and gets magenta on disk edges.

Figure 3.5: Merged images corrected by a constant multiplicative function.

For computing the multiplicative function, annuli of different thickness were tested. From
all tested annuli widths, the width of only one pixel was chosen. Looking at the figure 3.6,
the reason is obvious. Approaching the edge of the Sun disk around the diameter of 1650
pixels, the multiplicative function changes rapidly and the linear interpolation is no longer
effective in computing corresponding function values between two neighbouring steps when
using large steps. We need to soften the division. From the figure 3.7 can be seen, that width
of one pixel gives satisfying results in final color channel balance and preserves the neutral
gray shade.

Furthermore, annuli close to the center contain much less pixels than further ones and
requires inadequately large number of images to compute the representative median value
of annuli pixel values with decent reliability. But the variation of the angle at which we
are looking at the Sun surface is changing relatively slowly and hence the multiplicative
function does not have large derivative. That is why it was decided to compute median
value for a center circle of radius 100 pixels and after that continue with already mentioned
annuli of single pixel width division for further distances.

As we continue to the edges of the image, the median value decreases and zero values may
occur. To avoid division by zero, we have to set up a threshold. When one of the medians
in the ratio is lower than our selected threshold, the multiplicative function value is set
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Figure 3.6: Example of a multiplicative function with step size 1 pixel and with center
circle radius of 100 pixels.

(a) (b)

Figure 3.7: Multiplicative function.
(a) Multiplicative function with step of size 16 px.
(b) Multiplicative function with step of size 1 px.

to 1. The threshold in our computation was set to 1. That might lead to some inaccurate
estimates of multiplicative function value for annuli with medians close to 1, but regarding
the very low pixel values intensity in those annuli, the eventual color channels imbalance will
hardly be visible and very small in absolute pixel value difference.
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3.2.1 Evolution in time
The computation of the multiplicative function is quite computationally demanding task.
Overall processing of images takes a lot of computational time, regarding our intention to
create a video consisting of hundreds of processed image couples. As already mentioned in
subsection 3.1.4, images on both wavelengths have indeed different exposure times, but they
are constant in time. Focusing on performance improvement, one might come to an idea,
that we can save some time by precalculating a uniform multiplicative function applicable
for all image couples. More luckily this function would be independent of time and therefore
applicable also on records from totally different day or even year.

Figure 3.8: Evolution of pixel values on 1 600 Å in time.

A brief investigation of multiplicative function’s form was held. For each year from 2011
to 2020, ten subsequent images on each wavelength were selected from February 2nd. Then,
using Kappa Sigma Clipping method, medians for each annulus were computed. The median
function of the radius was calculated for each year. The results for 1 600 Å images are
summarized in the figure 3.8 and for 1 700 Å images in the figure 3.9.

We can see a consistent decrease of pixel value intensities in 1 600 Å. Since 2011 intensities
dropped almost on one third of its initial values in 2011. Looking at medians of 1 700 Å
images, the decrease is also visible. But the evolution is not so straightforward as in the first
case and the overall relative drop since 2011 is only roughly 30 %.

The final multiplicative functions are in the figure 3.10. Since yearly relative drops of
1 600 Å values are bigger than in 1 700 Å values, the multiplicative function is increasing in
time.

The change of measured total light intensity in time is probably caused by decreasing
quantum efficiency (sensitivity) of AIA’s CCD chips. Moreover, pixels in the center of a chip
are exposed to the strongest radiation and therefore degrading faster. But it does not have to
be effect only of chip’s sensitivity. The optics and filters might also change its characteristics
over time. But it requires an additional study which is not in the scope of this thesis.
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Figure 3.9: Evolution of pixel values on 1 700 Å in time.

Figure 3.10: Evolution of multiplicative function in time.

As a result of our findings, we are unable to use a unique precalculated multiplicative
function, that would be usable for records from any time. We have to calculate it for each
set of images individually.
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3.3 Resulting images and video
For a demonstration of resulting images, quite a strong eruption on October 24th 2014 was
chosen.

Looking at the figure 3.11, you can see a detail of an ongoing eruption. First two pictures
a) and b) represents 1 600 Å and 1 700 Å wavelength respectively with applied gamma
correction. Original images were combined into an image c) by

• computing and applying multiplicative function with resolution step 1 px,

• applying gamma correction with γ = 2.2 while changing zero pixel value to 200 and
keeping maximum value the top of original dynamic range (i.e. 214),

• the modified 1 600 Å was assigned to the red and blue color channels of resulting image
and the modified 1 700 Å was assigned to the green channel.

Finally the picture d) depicts the difference of both images.

(a) (b)

(c) (d)

Figure 3.11: The Sun eruption in detail.
(a) Image on 1 600 Å.
(b) Image on 1 700 Å.

(c) Resulting color image.
(d) The difference image.

51



(a) (b)

(c) (d)

Figure 3.12: The Sun eruption in detail with strong blooming effect.
(a) Image on 1 600 Å.
(b) Image on 1 700 Å.

(c) Resulting color image.
(d) The difference image.

There is another example from the same eruption in the figure 3.12. Here, the strong
blooming effect is present. The intensive light is probably caused by only thin stream along
a magnetic field induction line but as it exceeds the maximum pixel capacity of a chip, cap-
tured electrons start overflowing to neighbouring pixels, preferring the columnar direction.
The effect is stronger in 1 700 Å image because the average intensity on that wavelength is
higher than on 1 600 Å wavelength. Some of the pixels will be on top of dynamic range in
both images. Hence in those places the information about carbon C IV presence is lost and
the corresponding pixel in composed color image will have neutral, white color.

As already discussed in subsection 3.1.6, histograms of images with strong ongoing erup-
tions have bimodal character with one peak very close to zero pixel values (corresponding to
most of background and Sun disk pixel values) and the second one is very close to the top
of dynamic range corresponding to flares along magnetic induction lines in the place of
an eruption.

The second peak is chopped off at maximum pixel value, so some information is lost and
the image is affected by strong blooming effect. Most of the middle range pixel values are
unused and the resulting image captures very dark Sun disk and very bright eruption places.
To stretch out the low peak of histogram, we can saturate the image. This will make most
of Sun disk more locally contrasting.

On the other hand the very bright places will be saturated and lost some contrast and
the image noise is also multiplied. The comparison can be seen in the figure 3.13. For the sat-
urated image, the maximum pixel value was set to 6000 after applying the multiplicative
function.

In sections 2.2 and subsections 3.1.6 respectively, we discussed expected influence of
using different interpolation methods in image transformation. We can now compare it
on actual examples of resulting images processed using bilinear, biquadratic and bicubic
interpolation respectively in the figure 3.14. You can notice the decrease of intensities while
using biquadratic and bicubic interpolation method (corresponding with histogram changes
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(a) (b)

(c) (d)

Figure 3.13: Comparison of non saturated and saturated image with saturated pixels with
original value over 6000.

(a) Color non saturated image.
(b) The difference image of non saturated image.

(c) Color saturated image.
(d) The difference image of saturated image.

depicted in subsection 3.1.6). Because the change is not very significant, no gamma correction
was applied to make the change more visible.

(a) (b) (c)

Figure 3.14: Comparison of resulting images with different type of interpolation method
used for transformation.

(a) Bilinear interpolation.
(b) Biquadratic interpolation with parameter a = 1.

(c) Bicubic interpolation with kernel of size 6.
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(a)

(b) (c)

Figure 3.15: Comparison of edge sharpness in resulting images according to the
interpolation method used for transformation.

(a) Bilinear interpolation.
(b) Biquadratic interpolation with parameter a = 1.

(b) Bicubic interpolation with kernel of size 6.

In the figure 3.15 you can see in detail the difference of edge sharpness with respect to
used interpolation method. The borderline between very bright eruption lines with carbon
C IV (and surrounding overflowed pixels) and rest of the Sun disk is blurred in the case
of using bilinear interpolation and is significantly sharper for both biquadratic and bicubic
interpolation method. This effect is not desirable for our purposes. That is why the bilinear
interpolation comes out as the most suitable interpolation.

3.4 Graphical user interface
To create an opportunity to reproduce created images and videos of carbon C IV emissions
or study other events in Sun’s atmosphere, a graphical user interface (GUI) Carbon C IV
Analyser was created for Windows operating systems. The appearance of GUI is depicted
in figures 3.16 and 3.17. Let us describe its components.

On top of GUI you can see section (or panel) called Directory setup {1}, where you
can set up Data directory, which tells the algorithm where to find and save all data. FITS
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images are saved into subfolder fits and merged images into subfolder pic. If they do not
exist, subfolders are created automatically once the process is triggered. FITS files URL
links as the name suggests, is a reference to file that contains links on files from VSO.

Tab menu {2} enables you to switch between tabs Data selection and Histogram modifi-
cations and preview. We will describe both tabs in the following two subsections.

1

2

3

4

5

6

Figure 3.16: Graphical user interface with displayed tab Data Selection.

3.4.1 Data Selection tab
When Data selection is chosen, you can see similar layout as in the figure 3.16.

On top of tab Data selection there is a section {3} called Images to download/process,
where you can set up time range of images to be downloaded or merged and decide whether
you want to merge whole images or just its selected rectangular part.

Similarly in section {4}, you can specify time range and part of images to be included in
the video. Be aware of the fact, that the rectangular part is selected with respect to already
merged images and its dimensions. You have a possibility to select Same as images to keep
same time range (and same rectangular part of image respectively) as for merged images.
Also, you can specify the frame rate of video and influence ’speed’ of an event.

55



In section {5}, there is a thumbnail of selected FITS image with marked merge images
rectangle (the bigger red one) and video images rectangle (the smaller yellow one). Rect-
angles are updated each time, when some of rectangles’ parameter is changed with feasible
value. To be able to see thumbnail, first you have to select particular FITS images (see
subsection 3.4.2 below).

Last part Select actions {6} allows to choose desired actions you want to run. You can
download FITS files given by FITS files URL links in section {1} and time range in section
{3}. Similarly, another option is to merge images of both wavelengths from already existing
FITS files within given time range in section {1}. The third option is to generate video
from already merged files with parameters given in section {4}. Multiple options might be
selected to perform more tasks in single run. Last two options allow you to either clear all
files in directories or continue in processing where you ended last time.

1

2

7
5

8

Figure 3.17: Graphical user interface with displayed tab Histogram Modification & Preview.

3.4.2 Histogram Modifications and Preview tab
When Histogram modifications and preview tab is chosen, you can see a similar layout as in
the figure 3.17.
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Again, there is a thumbnail section {5} and detail preview {7}. To see it, first you have
to click on button Generate preview and select relevant 1 600 Å FITS file and 1 700 Å FITS
file. Thumbnail {5} displays 1 600 Å image, while the detail {7} displays merged images
of both wavelengths with applied computed multiplicative function, gamma correction and
linear transform respectively.

In section {8} called Select image parameters you can set up parameters Input black,
Input white and Input gamma which correspond to a minimum pixel value, a maximum
pixel value and gamma value respectively in used gamma correction (see subsection 2.3.2).

Furthermore parameters Output black and Output white correspond to minimum pixel
value and maximum pixel value respectively in used linear transform (see subsection 2.3.1).
Lastly, you can select whether you want to display the merged image or video image in detail
section {7}.

Press of button Generate preview is required only once to select relevant FITS files, show
thumbnail image and calculate detail image. Then the detail image is recalculated each time
when any image parameter is changed.

3.4.3 Recommended usage and procedure
Before you launch the Carbon C IV Analyser for the first time, you may need to install
Microsoft .NET Framework 4.5 or newer, if not already present on your computer. The in-
stallation file together with Carbon C IV Analyser is located in attachments. Maybe you
will have to disable locally your anti-virus software and run program as administrator to
achieve proper functioning. Also you can find in attached folder Data_sample_2016-07-
23_05-10_-_05-16 several FITS files which allow easy and fast testing images and video
creation without slow download process. In folder Eruptions there is a couple of text files
with links from interesting eruption and lastly, a couple of sample videos of eruptions are
attached in folder Videos.

Now we will describe a short procedure on how to obtain a video of an eruption from
scratch without requirement of any advanced knowledge of image processing techniques.

Once you decide which eruption you want to visualize, go to VSO, select all relevant files
and export links to file. Change file extension to .txt and link it in Carbon C IV Analyser
in section {1}.

In section {3}, select a short time range in the middle of the chosen eruption, just enough
to involve at least one image from each wavelength and download it {6}.

Next, go to tab Histogram modifications and preview {2}, press Generate preview {8}
and select downloaded FITS files from each wavelength.

After the preview and thumbnail is generated, go back to tab Data selection {2} and
tune merge image rectangle parameters {3} to capture the place of an eruption. Back in
tab Histogram modifications and preview tune image parameters until you are satisfied with
displayed detail image.

Finally, select all actions {6} you want to perform and press Process button.
The most time consuming part of the complete process is to download FITS files due

to limited downloading speed from VSO. Therefore if selected download and merge option
together, both tasks are executed simultaneously. FITS files are downloaded in such an order
that roughly corresponds to image couples to be merged and each such couple is merged
immediately right after both files are downloaded.
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Conclusion
Main objectives of the thesis have been fulfilled. In the first chapter 1, we have described

the Sun regarding its atmosphere, how is it monitored by SDO, how often are data collected,
in which way they are stored and how can it be obtained (see also subsection 2.1.1).

Further in chapter 2, the overall theory is summed up starting from a definition of
an image, most often used image interpolation methods, histogram modifications and phase
correlation. The couple of images was successfully registered by introduced phase correlation
method with accuracy on tenths of pixels. The phase correlation method can be tuned up
to be very robust for registering images capturing similar views (in our case the Sun disk).
However, we were not looking for the best parameters setup, because we had a chance
to register images using FITS headers. FITS headers contain keywords RSUN, CROTA2,
CRPIX1 and CRPIX2, which are sufficient to determine mutual transformation between our
couple images (see subsection 3.1.3). This method was found to be more reliable without
any tuning needed and also much faster, which is crucial when processing hundreds of large
images couples.

After registration, we had to deal with different intensities of the continuum in both
images (see subsection 3.1.4 and section 3.2). From all tested approaches we have got best
results for the method of computing annuli medians of Sun disk with difference of diameters
only 1 pixel. To achieve better results the medians were calculated by Kappa Sigma Clipping
method (see subsection 2.3.3) and the medians at the midst of Sun disk were calculated for
circle of radius 100 pixels to avoid low number of pixels involved in calculation. The ratio
of corresponding medians from both images determined the designed multiplicative function
to compensate continuum intensities in both images.

The calculation of multiplicative function is quite computationally and time demanding
task. As exposure times are fixed, we should be able to use precomputed multiplicative func-
tion for multiple number of image couples. We have studied the usability of such a function
in long term (see subsection 3.2.1). We have discovered inapplicability of such measures
due to significant long term changes of multiplicative function caused by decrease of pixel
intensities. Those are probably caused mainly by decreasing sensitivity of CCD chips of
AIA.

Images were combined using color channels. The 1 600 Å image with C IV was assigned
to the red and blue component, while the 1 700 Å image to the green one. Thus the resulting
image was grey and the eventual presence of carbon C IV was highlighted by magenta color.

The resulting images suffered, due to high dynamical resolution, from low local contrasts
in most parts of an image causing it to look dull. Only parts with C IV were high contrasting,
sometime even suffered from blooming effect. Hence we needed image adjustment, this time
from histogram point of view (see subsection 3.1.6). Firstly the gamma correction was
applied. This helped to make the Sun disk brighter. But for contrast changes the saturation
of an image was suggested. We can saturate the image as a whole. That gives a higher
contrast in overall Sun disk but decreases or even destroys the contrast at highest intensities,
namely at places with eruptions and C IV.

A videos were created of multiple image sequences capturing some major eruptions on Sun
over the history of SDO observations. They can be found in attachments and also reproduced
with different parameters thanks to created Graphical User Interface (see section 3.4).
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This thesis provides a first glance in the visualisation of the Sun and its eruptions from
the carbon C IV point of view. Further studies would be appropriate in many directions of
mentioned topics.

For example, the evolution of pixel intensities and depending multiplicative function
could be studied in more details to see if there can be found a simple dependence between
average pixel values and its degradation in time or if there are perhaps more factors with
measurable effects. For example, degradation of band pass filters could also have some
influence.

Aside from saturation, another methods for making images more contrasting can be stud-
ied. For example there could be useful a histogram modification function designed in such
a way, that it would stretch histograms around intensities of both histogram peaks and
squeeze intensities between them. Apart from the global histogram modification approach,
we could also try to use adaptive histograms methods, namely A Noise Adaptive Fuzzy
Equalization (NAFE) [5].
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List of abbreviations
AIA Atmospheric Imaging Assembly, the instrument aboard space probe Solar

Dynamics Observatory (see section 1.2)

ASCII American Standard Code for Information Interchange, code table defin-
ing characters of English alphabet and other symbols used in informatics

CCD Charged-coupled device, type of sensor for detecting and measuring light
intensity

curl Client URL, a command-line tool for transferring data using various net-
work protocols

C IV Three times ionized atom of carbon

DFT Discrete Fourier transform (see definition 2.9)

EVE Extreme Ultraviolet Experiment, the instrument aboard space probe So-
lar Dynamics Observatory (see section 1.2)

FITS Flexible Image Transport System, format for storing and sharing astro-
nomical data (see subsection 2.1.1)

FT Fourier transform (see definition 2.6)

GUI Graphical User Interface

HDU Header/Data Unit, the structure of FITS files (see subsection 2.1.1)

HMI Helioseismic Magnetic Imager, the instrument aboard space probe Solar
Dynamics Observatory (see section 1.2)

IDFT Inverse discrete Fourier transform (see definition 2.10)

IFT Inverse Fourier transform (see definition 2.7)

NAFE Noise Adaptive Fuzzy Equalization, adaptive histogram modification method
[5]

px pixel

RGB red-green-blue color system

SDO NASA’s space probe Solar Dynamics Observatory (see section 1.2)

VSO Virtual Solar Observatory, tool for searching and obtaining NASA’s ob-
servation data (see subsection 1.2.1)
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List of appendices
A Carbon C IV Analyser

B Data_sample_2016-07-23_05-10_-_05-18 folder with sample FITS files

C Eruptions folder with links files of several eruptions

D Videos folder with created videos of eruptions

63


	Introduction
	Astronomical background
	Sun
	Photosphere
	Chromosphere
	Transition region
	Solar corona
	Sunspots and solar flares

	Solar Dynamics Observatory
	Virtual Solar Observatory


	Mathematical theory
	Digital image
	Flexible Image Transport System

	Image interpolation methods
	Nearest neighbour
	Bilinear interpolation
	Biquadratic interpolation
	Bicubic interpolation

	Histogram modification
	Linear transform
	Gamma correction
	Kappa Sigma Clipping

	Fourier transform
	2D Fourier transform
	Discrete 2D Fourier transform
	Properties of Fourier transform
	Convolution

	Correlation
	Complex conjugate functions
	Phase correlation function
	Sub-pixel precision phase-correlation
	Polar coordinates
	Logarithmic-polar coordinates

	Weight functions
	Window function
	Low-pass high-pass weight function


	Implementation
	Algorithm
	FITS files download
	Image preprocessing
	Image registration
	Multiplicative function computation
	Image merging
	Histogram modification
	Used libraries

	Multiplicative function results
	Evolution in time

	Resulting images and video
	Graphical user interface
	Data Selection tab
	Histogram Modifications and Preview tab
	Recommended usage and procedure


	Conclusion
	Bibiliography
	List of abbreviations
	List of appendices

